

Erstellt von:

Dr. M. Fille, Dr. M. Berktold PhD, Dr. P. Kreidl, Dr. M. Aigner, BMA C. Hörtnagl, Doz. Dr. D. Orth, Dr. I. Heller, Dr. M. Mango, Dr. B. Risslegger, Univ.Prof.Dr. G. Weiss und Univ.Prof.Dr. C. Lass-Flörl

Sektion für Hygiene und Medizinische Mikrobiologie und Universitätsklinik für Innere Medizin VI, Klinische Infektiologie, Immunologie, Rheumatologie, Pneumologie Medizinische Universität Innsbruck

Vorwort

Die Sektion für Hygiene und Medizinische Mikrobiologie ist bemüht, einen Überblick über die epidemiologische Situation des Jahres 2015 für weite Teile Tirols zu geben. Es sollen die wichtigsten Erreger und deren Resistenzen, sowie Problemkeime übersichtlich dargestellt werden, um präventive Maßnahmen in der Praxis umsetzen zu können. Antibiotika werden erfolgreich gegen viele schwere Infektionskrankheiten eingesetzt. Verstärkt treten aber auch schwere bis nicht beherrschbare Infektionen auf, die zum Teil durch antibiotikaresistente Erreger bedingt sind. Für das Gesundheitswesen ist damit ein ernsthaftes Problem entstanden; Infektionen, die von multiresistenten Bakterien verursacht werden sind schwierig zu therapieren, verlängern die Behandlungsdauer und führen zu einer erhöhten Mortalität sowie zu höheren Behandlungskosten. Die Entwicklung und Ausbreitung humanpathogener Erreger wird ursächlich mit dem extensiven Antibiotikaeinsatz in der Massentierhaltung in Verbindung gebracht.

An dieser Stelle möchte ich mich bei Herrn Dr. Manfred Fille, Dr. Peter Kreidl und allen MitarbeiterInnen für diese Berichterstellung und das Engagement herzlich bedanken.

Univ.Prof.Dr. Cornelia Lass-Flörl

Haben Sie Interesse an unseren "News", dann besuchen Sie unsere Homepage http://www.i-med.ac.at/hyg_mikrobio_sozmed/hygiene/

Inhaltsverzeichnis

R	esistenztrends 2015 Tirol	. 4
1.	Einleitung	. 9
2.	Probenauswertung Universitätsklinikum Innsbruck	11
	2.1 Blutkulturen:	11
	2.2 S. aureus und MRSA	12
	2.3 E. coli und E. coli ESBL	13
	2.4 Erreger des Respirationstrakts	14
3.	Probenauswertung und Resistenzdaten aus dem niedergelassenen Bereich	15
	3.1 S. aureus und MRSA	15
	3.2 E. coli und E. coli ESBL-	16
	3.3 Erreger des Respirationstraktes	17
4.	LKI und niedergelassener Bereich	18
	4.1 Pseudomonas aeruginosa	18
	4.2 Klebsiella spp.	19
	4.3 Proteus mirabilis	20
	4.4 Erreger von Darminfektionen (Salmonella spp., Campylobacter jejuni)	20
	4.5 Hefepilze aus Blutkulturen	21
	4.6 Schimmelpilze aus infektionsrelevanten Regionen	23
5.	Multiresistente Erreger und Antibiotika-Verbrauch	25
	5.1 Imipenem-resistente Enterobakteriazeae	25
	5.2 Multiresistente Nonfermenter	27
	5.3 Methicillin-resistente Staphylococcus aureus (MRSA)	29
	5.4 Vancomycin-resistente Enterokokken (VRE)	31
	5.5 Linezolidresistenz bei gram-positiven Erregern	33
6	Definition multi-registente Erreger	38

Resistenztrends 2015 Tirol

- 1. Linezolid-resistente Staphylokokken (61 Isolate S. epidermidis) und Enterokokken (16 Isolate E. faecium) sind nicht weiter im Zunehmen.
- 2. Die Anzahl an Vancomycin-resistenten Enterokokken in Blutkulturen ist gegenüber dem Vorjahr gleichgeblieben (18% der aus Blutkulturen isolierten *E. faecium*-Isolate sind Glykopeptid-resistent).
- 3. Der Anteil an *E.coli*-ESBL-Isolaten in Harnproben ist im Vergleich zum Vorjahr annähernd gleichgeblieben (10%).

- 4. Von 2014 auf 2015 kam es zu einem leichten Anstieg von 58 auf 70 Erstisolate von Imipenem-resistenten Enterobakteriazeae.
- 5. Die MRSA-Nachweisrate in Blutkulturen am LKI ist gegenüber dem Vorjahr leicht angestiegen (von 5% auf 8%).
- 6. Kulturell nachgewiesene Candidämien (44%) und Mischinfektionen haben zugenommen.

ÜBERSICHT:

Problemkeime und multiresistente Erreger in Innsbruck LKI: Trends von 2007 – 2015

Resistenzen in % (resistente Isolate / Gesamtanzahl getesteter Isolate)

Gram- negative Erreger	Pseudomonas aeruginosa	Escherichia coli (inkl. ESBL) **	Escherichia coli (nur ESBL)	Klebsiella pneumoniae (inkl. ESBL)	Haemophilus influenzae
Material	BK *	Harn	Harn	BK *	Respirationstrakt
Antibiotikum	Imipenem	Ciprofloxacin	Ciprofloxacin	Ceftazidim °	Ampicillin
2007	50%	33%	50%	27%	26%
2007	(9/18)	(1054/3159)	(265/530)	(12/44)	(30/114)
2008	43%	30%	92%	23%	34%
2000	(6/14)	(807/2682)	(316/344)	(10/47)	(24/70)
2009	35%	32%	92%	18%	25%
2009	(7/20)	(934/2919)	(426/464)	(3/17)	(19/76)
2010	57%	22%	88%	15%	18%
2010	(17/30)	(714/3247)	(269/306)	(7/46)	(16/91)
2011	40%	25%	88%	27%	24%
2011	(6/15)	(723/2892)	(269/306)	(7/26)	(11/46)
2012	37%	24%	88%	23%	16%
2012	(11/30)	(678/2826)	(240/273)	(13/56)	(14/85)
2013	32%	21%	79%	25%	11%
2013	(7/22)	(753/3586)	(265/335)	(10/40)	(11/98)
2014	36%	20%	72%	9%	23%
2011	(10/28)	(698/3490)	(210/292)	(3/35)	(15/66)
2015	47%	23%	71%	16%	21%
2013	(16/34)	(732/3184)	(218/307)	(9/56)	(16/76)

^{*} BK, Blutkulturen

^{**} Extended-Spektrum-Beta-Laktamase produzierende E. coli

^o Ceftazidim steht stellvertretend für die Gruppe der Drittgenerations-Cephalosporine

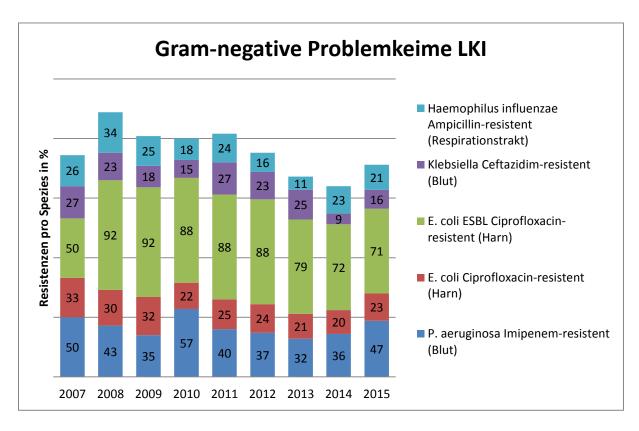


Abbildung 1: Resistenzen in % der Gram-negativen Problemkeime am LKI von 2007 - 2015

Gram- positive Erreger	Staphylococcus aureus (Methicillin- resistent, MRSA)	Enterococcus faecalis (Vancomycin- resistent, VRE)	Enterococcus faecium (Vancomycin- resistent, VRE)	S. pneumoniae (Makrolidresistent)
Material	BK *	BK *	BK *	Respirationstrakt
Antibiotikum	Cefoxitin***	Vancomycin	Vancomycin	Erythromicin**
2007	16%	0%	3%	19%
_007	(12/75)	(0/65)	(1/38)	(44/234)
2008	6%	0%	5%	17%
2000	(4/64)	(0/37)	(2/42)	(11/63)
2009	11%	2,2%	0%	19%
_007	(8/74)	(1/44)	(0/33)	(19/103)
2010	8%	3,3%	1,7%	16%
2010	(4/50)	(2/59)	(1/59)	(27/169)
2011	1,3%	2%	1,4%	20%
2011	(2/63)	(3/68)	(2/68)	(63/315)
2012	7%	0%	12%	17%
2012	(9/79)	(0/33)	(4/33)	(7/42)
2013	10%	0%	10%	16%
2013	(8/82)	(0/35)	(3/29)	(7/44)
2014	5%	0%	18%	13%
	(5/96)	(0/40)	(7/40)	(5/38)
2015	8%	0%	18%	14%
2015	(7/93)	(0/39)	(5/28)	(8/56)
* BK Blut	1 14			1

^{*} BK, Blutkulturen

^{**} Leitsubstanz bei Makrolidresistenz-Testung

^{***} Leitsubstanz zur Erkennung von Methicillinresistenz

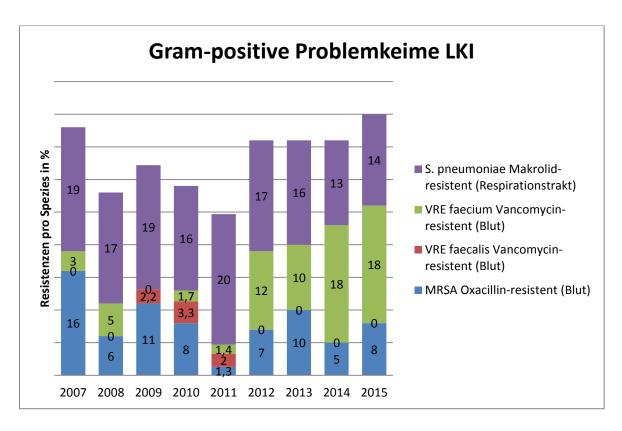


Abbildung 2: Resistenzen in % der Gram-positiven Problemkeime am LKI von 2007 - 2015

1. Einleitung

Im bakteriologisch-mykologischen Labor an der Sektion für Hygiene und Med. Mikrobiologie der Medizinischen Universität Innsbruck wird Probenmaterial der Universitätsklinik Innsbruck sowie anderer öffentlicher und privater Krankenanstalten und von niedergelassenen Ärzten und Fachärzten in Tirol untersucht. Im Jahr 2015 gelangten insgesamt 187.776 Probenmaterialien von 65.282 Patienten zur Untersuchung

Die Keim- und Resistenzspektra werden sowohl für verschiedene Untersuchungsmaterialien, als auch für den ambulanten und stationären Bereich getrennt angeführt. In einem eigenen Kapitel wird auf Problemkeime wi Methicillin-resistente Staphylokokken (*Staphylococcus aureus*, MRSA), Vancomycin-resistente Enterokokken (VRE) oder Breitspektrum-Beta-Laktamase (ESBL)-bildende Enterobakteriazeae (extended-spectrum-beta-lactamase, Abk.: "ESBL") und Carbapenem-resistente Enterobakteriazeae eingegangen.

Bei der Auswertung wurde jeweils ein Patienten-Erstisolat berücksichtigt.

Das Ausmaß der Antibiotikaresistenz unterliegt einem stetigen Wandel: Aufgabe einer kontinuierlichen Überwachung ist es, diese Dynamik frühzeitig zu erfassen und auf neu auftretende Resistenzprobleme frühzeitig aufmerksam zu machen. Im Jahr 2008 wurden von der gesamtösterreichischen "Arbeitsgruppe Antibiotikaresistenz" bestimmte "Indikatorkeime" und "-Antibiotika" für Klinik und niedergelassene Ärzte in allen Bundesländern festgelegt. Dadurch sollen die in den einzelnen Bundesländern erhobenen Daten vergleichbar werden, lokale Unterschiede im Resistenzverhalten zu erkennen. Die erhobenen gesamtösterreichischen Daten werden jährlich im Resistenzbericht (AURES) des Bundesministeriums für Gesundheit (BMG) veröffentlicht.

Im Jänner 2012 wurde vom Bundesministerium für Gesundheit die "Nationale Initiative zur Bekämpfung der Resistenz gegen antimikrobiell wirksame Arzneimittel" gegründet. Eines der Ziele wird der Aufbau eines Frühwarnsystems für die Erkennung von Ausbruchssituationen mit antibiotikaresistenten Keimen sein. 2014 wurde ein Pilotprojekt der AGES (Agentur für Gesundheit und Ernährungssicherheit) zur Erfassung des Antibiotika-Verbrauchs gestartet, an dem auch die Universitätsklinik Innsbruck teilnimmt und Verbrauchsdaten gemeinsam mit anderen Krankenanstalten in Österreich zentral meldet.

Im Resistenzbericht 2015 werden die multiresistenten Erreger in einem eigenen Abschnitt behandelt und der Verbrauch häufig eingesetzter Antibiotika dem Auftreten von resistenten Erregern gegenübergestellt.

Unser Ziel ist es, mit dem Resistenzbericht den klinisch tätigen Arzt in der Auswahl der Antibiotika zu unterstützen. Leitlinien zur mikrobiologischen Probenabnahme sowie für

antibiotische, antimykotische und antivirale Therapieempfehlungen finden sich im "Innsbrucker Infektionsbüchlein", welches 2015 neu aufgelegt wurde.

Telefonische Befundauskunft:

Bakteriologie-Labor 0512-9003-70750

Probenannahmezeiten:

Montag – Freitag von 08.00 - 18.00 Uhr

Samstag von 08.00 – 11.00 Uhr und 16.00 - 17.00 Uhr

Sonn- und Feiertag von 08.00 – 10.00 Uhr

tel. Bereitschaft an Samstagen 17.00 – 18.00 Uhr, an Sonn-und Feiertagen: 18.00 – 19.00 Uhr

MitarbeiterInnen:

LASS-FLÖRL Cornelia, Direktorin

AIGNER Maria, Mykologie

BERKTOLD Michael, Bakteriologie, Krankenhaushygiene

FILLE Manfred, stv. Bereichsleitung, Tuberkulosediagnostik

HELLER Ingrid, Bakteriologie, Parasitologie

KNABL Ludwig, Bakteriologie

KREIDL Peter, Public Health

LACKNER Michaela, Molekulare Diagnostik

MANGO Monica, Bakteriologie

ORTH-HÖLLER Dorothea, Bereichsleitung Bakteriologie, Krankenhaushygiene

RISSLEGGER Brigitte, Bakteriologie, Mykologie

2. Probenauswertung Universitätsklinikum Innsbruck

Im Jahr 2015 gelangten insgesamt 106.555 Materialien von 24.622 PatientInnen zur Einsendung. Harne (26%), Abstriche (20%), Blutkulturen und diverse Punktate (Ascites, Hüfte) in Blutkulturmedium (18%) machen mehr als die Hälfte der Einsendungen aus. Von den Intensivstationen werden im Durchschnitt ca. 16 Proben/Patient, auf Normalstationen etwa 3 Proben/Patient eingeschickt. Ein Viertel der gesamten Einsendungen stammt von den sieben Intensivstationen des Klinikums!

2.1 Blutkulturen: Resistenzen in % (resistente Isolate / Anzahl getesteter Isolate)

Gram-negativ	Ciprofloxacin	Cefotaxim**	Piperacillin/ Tazobactam	Gentamicin	Imipenem
E. coli	37%	13%	12%	12%	0%
(inkl. ESBL*)	(61/164)	(21/163)	(20/164)	(20/164)	(0/164)
E PEGDI	85%	100%	40%	40%	0%
E. coli-ESBL	(17/20) $(20/20)$	(8/20)	(8/20)	(0/20)	
P. aeruginosa	34%		41%	28%	47%
	(11/32)		(14/34)	(9/32)	(16/34)
K. pneumoniae	5%	16%	10%	2%	7%
(inkl. ESBL)	(2/42)	(9/56)	(4/42)	(1/45)	(4/56)

^{*}ESBL, Extended-Spectrum-Beta-Lactamase

^{**}Cefotaxim steht stellvertretend für die Gruppe der Drittgenerations-Cephalosporine

Gram-positiv	Trim. Sulf.	Tetrazyklin	Gentamicin	Clindamycin	Rifampicin
S. aureus	1%	8%	3%	18%	0%
(inkl. MRSA)	(1/93)	(7/93)	(3/93)	(17/93)	(0/93)
MRSA	0%	14%	0%	57%	0%
	(0/7)	(1/7)	(0/7)	(4/7)	(0/7)

2.2 S. aureus und MRSA

(Abstriche, Punktate, Blutkulturen)

S. aureus		Isolate		Dagistona 0/
(inkl. MRSA)	Getestet	Sensibel	Resistent	- Resistenz %
Penicillin	1175	258	917	78
Cefoxitin	1175	1075	100	9
Gentamicin	1174	1151	23	2
Tetrazyklin	1175	1128	47	4
Azithromycin	1175	940	235	20
Clindamycin	1175	952	223	19
Fusidinsäure	941	932	9	1
TrimSulf.	1175	1163	12	1
Vancomycin	919	919	0	0
Linezolid	921	921	0	0
Fosfomycin	923	905	18	2
Rifampicin	920	920	0	0
Moxifloxacin	1175	1081	94	8

		Isolate		_
MRSA	Getestet	Sensibel	Resistent	Resistenz %
Gentamicin	100	91	9	9
Tetrazyklin	100	84	16	16
Azithromycin	100	30	70	70
Clindamycin	100	34	66	66
Fusidinsäure	99	93	6	6
TrimSulf.	100	99	1	1
Vancomycin	99	99	0	0
Linezolid	100	100	0	0
Fosfomycin	99	88	11	11
Rifampicin	99	98	1	1
Moxifloxacin	100	25	75	75
Mupirocin	52	52	0	0

Die Resistenzen von *S. aureus* gegen Makrolide und Clindamycin (bei Vorliegen von induzierbarer Clindamycin-Resistenz wird Clindamycin resistent befundet) liegen im Bereich zwischen 19% und 20%.

Die MRSA-Isolate hingegen zeigen erwartungsgemäß deutlich häufiger Resistenzen gegen andere Substanzklassen als der Methicillin-sensible *S. aureus*. Der Gesamtanteil von MRSA an *S. aureus*—Isolaten ist mit 9% leicht angestiegen. Vancomycinresistenz wird weiterhin nicht beobachtet.

2.3 E. coli und E. coli ESBL

(Uricult, Katheterharn und Nativharn)

Escherichia coli		Isolate		
(inkl. ESBL)	Getestet	Sensibel	Resistent	Resistenz %
Ampicillin	3185	1561	1624	51
Amp. + Clav.	3183	2928	255	8
Cefalexin	3182	2800	382	12
Cefuroxim	3185	2866	319	10
Cefpodoxim	3183	2865	318	10
TrimSulf.	3185	2230	955	30
Nitrofurantoin	3184	3025	159	5
Ciprofloxacin	3184	2452	732	23
Mecillinam	3185	2835	350	11
Fosfomycin	3185	3088	97	3
Gentamicin	3185	2994	191	6

E PEGDI		Isolate		- D : 4 0/
E. coli-ESBL	Getestet	Sensibel	Resistent	Resistenz %
Amp. + Clav.	306	159	147	48
Piperacillin/Tazobactam	306	263	43	14
Trim.+Sulf.	307	92	215	70
Nitrofurantoin	306	275	31	10
Ciprofloxacin	307	89	218	71
Mecillinam	307	243	64	21
Fosfomycin	307	273	34	11
Gentamicin	307	227	80	26

Der Anteil von *E.coli*-ESBL an den im Harn insgesamt gezüchteten *E.coli* ist gegenüber dem Vorjahr annähernd gleich geblieben (10%). Häufig wird eine kombinierte Resistenz von Gyrasehemmern und Betalaktamen/Betalaktamasehemmer-Kombinationen bei diesen Erregern festgestellt, da oft beide Resistenzgene auf einem Plasmid sitzen.

2.4 Erreger des Respirationstrakts

(Oberer Respirationstrakt, Sputa, bronchoalveoläre Lavagen)

ß-häm.		Isolate		
Streptokokken der Gruppe A	Getestet	Sensibel	Resistent	Resistenz %
Penicillin	75	75	0	0
Azithromycin	75	70	5	7
Moxifloxacin	75	74	1	1
S. pneumoniae				
Penicillin	56	53	3	5
Azithromycin	56	48	8	14
Moxifloxacin	56	56	0	0
H. influenzae				
Ampicillin	76	60	16	21
Amp.+Clav.	76	75	1	1
Moxifloxacin	76	76	0	0

Die Resistenzlage der häufigsten Erreger des oberen Respirationstrakts ist dem Vorjahr gegenüber unverändert. Auffallend ist die weiterhin ausgezeichnete Wirksamkeit von Penicillin G gegen Streptokokken. Resistenzen gegenüber Fluoroquinolonen, wie andernorts z. B. im asiatischen Raum berichtet (S. Lee, Microbial Drug Resistance 2010), sind bei uns vergleichsweise (noch) immer selten.

3. Probenauswertung und Resistenzdaten aus dem niedergelassenen Bereich

Im Jahr 2015 wurden insgesamt 38985 Proben von 28335 PatientInnen eingeschickt, wobei Stühle und Harne zusammen über 60% der Einsendungen ausmachen.

3.1 *S. aureus* und MRSA (alle Untersuchungsmaterialien)

S. aureus (inkl.		Isolate		– Resistenz %
MRSA)	Getestet	Sensibel	Resistent	- Resistenz %
Penicillin	572	149	423	74
Cefoxitin	642	613	29	5
Gentamicin	642	636	6	1
Tetrazyklin	572	549	23	4
Azithromycin	572	463	109	19
Clindamycin	572	469	103	18
Fusidinsäure	114	111	3	3
TrimSulf.	643	637	6	1
Vancomycin	91	91	0	0
Linezolid	85	85	0	0
Fosfomycin	156	137	19	12
Rifampicin	85	85	0	0
Moxifloxacin	572	555	17	3

MDCA		Isolate		- Resistenz %
MRSA	Getestet	Sensibel	Resistent	- Resistenz %
Gentamicin	29	28	1	3
Tetrazyklin	27	23	4	15
Azithromycin	27	7	20	74
Clindamycin	27	8	19	70
Fusidinsäure	27	25	2	7
Trim Sulf.	29	29	0	0
Vancomycin	28	28	0	0
Linezolid	26	26	0	0
Fosfomycin	28	28	0	0
Rifampicin	26	26	0	0
Moxifloxacin	27	10	17	63

Die Resistenzraten von *S. aureus* (inkl. MRSA) gegen Azithromycin und Clindamycin (bei Vorliegen von induzierbarer Clindamycin-Resistenz wird Clindamycin resistent befundet) lagen im Bereich von 18 – 19% bei den übrigen Antibiotika fand sich mit Ausnahme von Penicillin G (74% resistent) jeweils ein Anteil von weniger als 12% resistenter Stämme. Die MRSA-Isolate zeigen erwartungsgemäß deutlich häufiger Resistenzen gegen andere Substanzklassen als der Methicillin-sensible *S. aureus*. Der Anteil von MRSA an *S. aureus*-Isolaten von niedergelassenen Ärzten beträgt ca.5%.

3.2 E. coli und E. coli ESBL- (Uricult, Katheterharn, Nativharn)

E. coli		Isolate		- Resistenz %
(inkl. ESBL)	Getestet	Sensibel	Resistent	Resistenz 70
Ampicillin	4640	2506	2134	46
Amp. + Clav.	4632	4308	324	7
Cefalexin	4637	4173	464	10
Cefuroxim	4640	4222	418	9
Cefpodoxim	4638	4220	417	9
Trim Sulf.	4640	3434	1206	26
Nitrofurantoin	4640	4408	232	5
Ciprofloxacin	4638	3803	835	18
Mecillinam	4640	4222	418	9
Fosfomycin	4640	4547	93	2
Gentamicin	4640	4408	232	5

E. coli - ESBL			- Resistenz %	
E. cou - ESDL	Getestet	Sensibel	Resistent	Resistenz %
Amp. + Clav.	359	208	151	42
Trim. + Sulf.	359	108	251	70
Nitrofurantoin	359	302	57	16
Ciprofloxacin	359	66	293	7 6
Mecillinam	359	284	75	21
Fosfomycin	359	320	39	11
Gentamicin	359	273	86	24

8% der im niedergelassenen Bereich nachgewiesenen *E. coli* im Harn sind Breitspektrum-Betalaktamase-Bildner (sog. *E. coli* -ESBL).

3.3 Erreger des Respirationstraktes

ß-häm. Streptokokken		– Resistenz %		
der Gruppe A	Getestet	Sensibel	Resistent	Resistenz /0
Penicillin	176	176	0	0
Azithromycin	176	167	9	5
Moxifloxacin	176	174	2	1
S. pneumoniae				
Penicillin	119	119	0	0
Azithromycin	121	111	10	8
Moxifloxacin	121	121	0	0
H. influenzae				
Ampicillin	113	88	25	22
Amp. + Clav.	113	113	0	0
Moxifloxacin	113	112	1	1

Kommentar: siehe Punkt 2.4.

4. LKI und niedergelassener Bereich

4.1 Pseudomonas aeruginosa (aufgelistet nach Art des Untersuchungsmaterials)

P. aeruginosa		Isolate		_ Resistenz %
(Abstriche)	Getestet	Sensibel	Resistent	_ 11001001111 / 0
Ciprofloxacin	483	425	58	12
Gentamicin	485	461	24	5
Piperacillin/Tazobactam	485	427	58	12
4.Gen.Cephalosporin	484	445	39	8

P. aeruginosa		Isolate		– Resistenz %
(Trachealsekret, BAL)	Getestet	Sensibel	Resistent	Resistenz %
Imipenem	139	96	43	31
Ciprofloxacin	138	102	36	26
Ceftazidim	139	103	36	26
Gentamicin	138	112	26	19
Piperacillin/Tazobactam	139	99	40	29
4.Gen.Cephalosporin	139	111	28	20
Colistin	139	139	0	0

P. aeruginosa, ein Gram-negatives Stäbchenbakterium und oft opportunistischer Erreger, wurde hinsichtlich seiner häufigsten Infektions-/Kolonisations-Lokalisationen ausgewertet. Im Vergleich zum Vorjahr ergibt sich bei Isolaten aus dem Respirationstrakt eine geringere Resistenzrate gegen Carbapeneme (von 37% auf 31%).

Zusätzlich zur *in-vitro*-Resistenz von Ciprofloxacin wird auch bei *in-vitro* sensiblen Isolaten die klinische Wirksamkeit angezweifelt. Ursachen für dokumentiertes Therapieversagen mit dieser Substanz, z.B. bei der Beatmungspneumonie, sind wahrscheinlich einem zu geringen Wirkspiegel (cave Unterdosierung!) und der Biofilmbildung der Bakterien geschuldet.

4.2 Klebsiella spp.

Klebsiella spp. (inkl. ESBL-				
Klebsiella) (Abstriche, Sputa, Harne)	Getestet	Sensibel	Resistent	Resistenz %
Amp. + Clav.	1991	1732	259	13
Cefalexin	1989	1273	716	36
Cefuroxim	1991	1653	338	17
Cefpodoxim	1575	1339	236	15
Trim. + Sulf.	1991	1593	398	20
Ciprofloxacin	1988	1670	318	16
Gentamicin	1991	1891	100	5
Imipenem	628	597	31	5

Klebsiella spp. wird als Erreger nosokomialer Infektionen wie Pneumonien, Sepsis und auch rezidivierender Infektionen des Harntrakts gefunden, dies erklärt auch die relativ hohe Resistenzrate.

Seit einigen Jahren werden auch in Tirol, teils durch aus Nachbarländern importierte Infektionen, Carbapenem-resistente Klebsiellen nachgewiesen.

Somit verzeichnen wir 2015 eine weitere Zunahme von Keimen mit diesem Resistenzmechanismus.

4.3 Proteus mirabilis

Proteus mirabilis		Isolate		– Resistenz %
(Harne)	Getestet	Sensibel	Resistent	— Resistenz 76
Ampicillin	566	413	153	27
Amp. + Clav.	566	549	17	3
Cefalexin	565	525	40	7
Cefuroxim	566	549	17	3
Cefpodoxim	566	549	17	3
TrimSulf.	566	413	153	27
Ciprofloxacin	566	521	45	8
Mecillinam	566	475	91	16
Fosfomycin	566	504	62	11
Gentamicin	566	504	62	11

Proteus mirabilis ist ein häufiger Erreger von Harnwegsinfektionen beim älteren Menschen und Patienten mit Fehlbildungen der ableitenden Harnwege. Obwohl eine ESBL-Bildung und damit einhergehende Multiresistenz auch bei diesem Keim beschrieben ist, sind solche Stämme bei uns sehr selten (etwa 1%). Die Resistenzlage bei *Proteus mirabilis* ist daher als gleichbleibend günstig zu bewerten.

4.4 Erreger von Darminfektionen (*Salmonella spp.*, *Campylobacter jejuni*) Resistenzen in % (resistente Isolate/Gesamtzahl Isolate)

	Salmonella Gruppe D	Salmonella Gruppe B	Campylobacter jejuni
Azithromycin	11% (5/45)	20% (14/70)	0% (0/313)
Trimethoprim/Sulfonamid	0% (0/45)	6% (4/70)	n.a.
Ciprofloxacin	0% (0/45)	9% (6/70)	70% (219/313)
Ampicillin	9% (4/45)	30% (21/70)	n.a.

n.a. = nicht ausgetestet

4.5 Hefepilze aus Blutkulturen

(alle Einsender)

Im Jahr 2015 wurden bei 91 PatientInnen 100 Hefepilze aus Blutkulturen gezüchtet; das entspricht einer prozentuellen Zunahme der kulturell nachgewiesenen Candidämien von 44% im Vergleich zu 2014 (63 PatientInnen). Während Mischinfektionen in den Vorjahren eine Ausnahme darstellten, betrugen diese 2015 10%.

C. albicans ist mit 54% nach wie vor die am häufigsten nachgewiesene *Candida*-Art; Resistenzen innerhalb dieser Spezies konnten keine detektiert werden (Abb. 3).

Unter den *non-albicans*-Spezies betrug die Resistenzrate 48%, 37% bzw. 43% gegenüber Fluconazol, Voriconazol bzw. Posaconazol. Azolresistenzen betreffen in erster Linie Spezies mit bekannter Tendenz zur Panazol-Resistenz wie *C. glabrata*, *C. krusei* und seltene *Candida*-Spezies wie *C. inconspicua*. Echinocandinresistenzen wurden in 24% der *non-albicans*-Spezies nachgewiesen; unter ihnen ausnahmslos Spezies, bei denen eine verminderte Echinocandin-Empfindlichkeit *in vitro* bekannt ist (*C. parapsilosis* und *C. guillermondii*).

Die Auswertung der Resistenztestung erfolgte entsprechend den EUCAST-Richtlinien (European Committee on Antibiotic Susceptibility Testing).

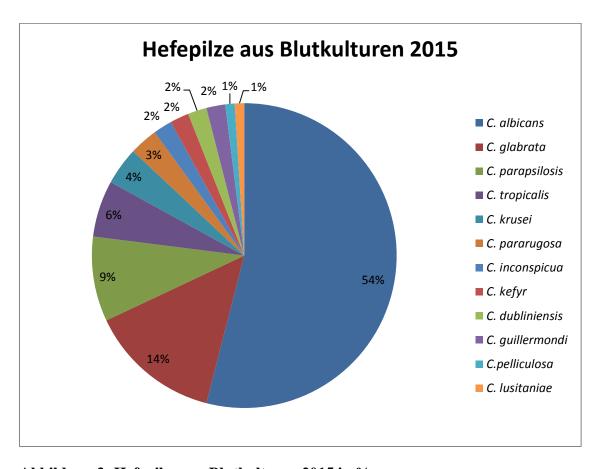


Abbildung 3: Hefepilze aus Blutkulturen 2015 in %

Resiste	ente Isolate in absoluten Zahlen bzw. in %						
Spezies	GETESTETE ISOLATE	FLUCONAZOL	AMPHO- TERICIN B	VORI- CONAZOL	POSA- CONAZOL	ANIDULA- FUNIGIN	
C. albicans	54		SENSIBEL				
C. glabrata	14	13 (93%)	SENSIBEL	10 (71%)	12 (85%)	SENSIBEL	
C. parapsilosis	9	1 (11%)	1 (11%) SENSIBEL			9 (100%)	
C. tropicalis	6	1 (17%)	SENSIBEL	1 (17%)	1 (17%)	SENSIBEL	
Pichia kudriazevii/ C. krusei	4	4 (100%)	SENSIBEL	3 (75%)	4 (100%)	SENSIBEL	
C. pararugosa	3	1 (33%)	SENSIBEL	1 (33%)	1 (33%)	SENSIBEL	
C. inconspicua	2	2 (100%)	SENSIBEL	2 (100%)	2 (100%)	SENSIBEL	
C. kefyr	2			SENSIBEL			
C. dubliniensis	2			SENSIBEL			
C. guillermondi	2	SENSIBEL 2 (100%)				2 (100%)	
C. pelliculosa	1	SENSIBEL					
Clavispora lusitaniae/ C. lusitaniae	1			SENSIBEL			

Intermediäre Werte wurden zu den resistenten Stämmen addiert

4.6 Schimmelpilze aus infektionsrelevanten Regionen

(alle Einsender)

Im Jahr 2015 wurden bei 177 PatientInnen 209 Schimmelpilzisolate aus infektionsrelevanten Regionen gezüchtet; das entspricht einer neuerlichen prozentuellen Zunahme der PatientInnen mit kulturell nachgewiesenen Schimmelpilzen um 8% im Vergleich zum Vorjahr (in dem eine prozentuelle Zunahme von 145% verzeichnet wurde).

Die meisten Schimmelpilz-Spezies stammen aus bronchoalveolären Lavagen (94%), die übrigen aus Punktaten/Geweben von Lunge, Weichteilen und Wunden.

Aspergillus-Spezies wurden mit 70% nach wie vor am häufigsten isoliert, unter ihnen führend A. fumigatus mit 68%, gefolgt von A. terreus und A. glaucus complex mit jeweils 7% (Abb. 4). Nach wie vor konnten unter den Aspergillus fumigatus-Isolaten keine Resistenzen detektiert werden. Lediglich ein Aspergillus-Isolat wurde als resistent gegenüber Voriconazol getestet, A. calidoustus, welcher für seine Azol-Resistenz bekannt ist.

Im Jahr 2015 konnten 5 Mucormyzeten (2% aller Schimmelpilzspezies) gezüchtet werden; unter ihnen zeigte sich kein Isolat resistent gegenüber Amphotericin B, 2/5 Isolaten wurden als resistent gegenüber Posaconazol gewertet.

Zu beachten ist hierbei allerdings, dass derzeit keine klinischen Breakpoints für Non-Aspergillus-Spezies vorliegen. Die Interpretation der Resistenztestung erfolgt daher in Anlehnung an die für Aspergillus-Spezies publizierten Daten. Die Korrelation der *in-vitro* gemessenen MHK (Minimale Hemmkonzentration) und der *in-vivo* Wirksamkeit ist weitgehend unklar.

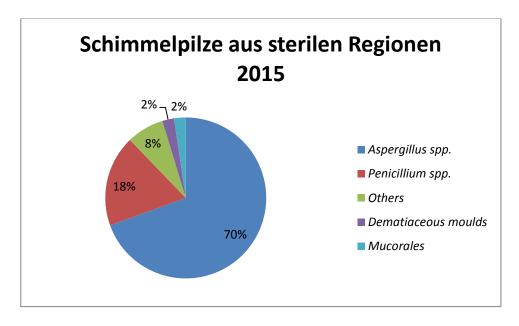


Abbildung 4: Schimmelpilze aus sterilen Regionen (incl. BAL) 2015 in %.

Isolate in absoluten Zahlen bzw. in % (Resistenzen) Amphotericin B Micafungin **Posaconazol** Voriconazol Anzahl **Spezies** SENSIBEL **SENSIBEL** 100 Asp. fumigatus complex (77/100)* 11 6/6 (100%)* **SENSIBEL** Asp. terreus complex SENSIBEL Asp. glaucus complex 11 SENSIBEL **SENSIBEL** 9 Asp. nidulans complex (8/9)*SENBSIBEL Aspergillus spp. **SENSIBEL** 6 Asp. niger complex (5/6)*Asp. versicolor 3 1/2 (50%)* **SENSIBEL** 2 SENSIBEL 2 (100%) Asp. ochraceus complex 2 (100%) 1 (50%) 1/1 (100%)* 2 SENSIBEL Asp. flavus complex 2 SENSIBEL Asp. amstelodami Asp. steynii 1 SENSIBEL Asp. calidoustus SENSIBEL 1 1 (100%) **SENSIBEL SENSIBEL SENSIBEL** Asp. clavatus 1 1 (100%) 39 9/32 (28%)* 8 (21%) Penicillium spp. 7 (18%) 1 (3%) Lichtheimia spp. 3 SENSIBEL 1 (33%) Muco-rales **SENSIBEL** 1 (50%) Mucor circinelloides 2 3 SENSIBEL 1 (33%) SENSIBEL Alternaria spp. Dematia-SENSIBEL Exophiala oligosperma 1 1 (100%) 1 (100%) **SENSIBEL** Chaetomium sp. 1 1 (100%) 3 3 (100%) SENSIBEL 3 (100%) Trichoderma spp. Fusarium spp. 3 SENSIBEL 3 (100%) 1 (33%) 2 (67%) 1/1 (100%)* SENSIBEL Paecilomyces spp. 2 1 (50%) SENSIBEL Exophiala oligosperma 1 1 (100%) 1 (100 %) 1 SENSIBEL Scopulariopsis sp. **Thermomyces** 1 (100%) **SENSIBEL** 1 lanuginosus **Doratomyces** SENSIBEL **SENSIBEL** 1 (100%) microsporus 1 SENSIBEL SENSIBEL Rasamsonia argillacea 1 1 (100%) Phanerochaete **SENSIBEL** 1 chrysosporium

^{*} eine Resistenztestung gegenüber Amphotericin B wurde nicht bei allen Isolaten durchgeführt.

5. Multiresistente Erreger und Antibiotika-Verbrauch

5.1 Imipenem-resistente Enterobakteriazeae

Enterobakteriazeae-Isolate (*Enterobacter sp., Klebsiella sp., Citrobacter sp., Serratia*) zeigten eine deutlichen Zunahme der Resistenz gegenüber dem Carbapenem Antibiotikum Imipenem bis zum Jahre 2013 (Abb. 5). Im Jahr 2014 kam es zu einem Rückgang, jedoch wurden im Jahr 2015 wieder mehr Imipenemresistente Erstisolate (70) von Enterobakteriazeae als im Vorjahr (58), jedoch weniger als 2013 (75), bestätigt.

Klebsiella sp. war 2015, wie in den Jahren zuvor, die am häufigsten detektierte Spezies mit in-vitro Resistenz gegenüber Imipenem (n=49, 70,0% aller Erstisolate), gefolgt von Enterobacter sp. (n=11, 15,5%) und Citrobacter sp. (n=7, 10,0%). Im Jahr 2015 wurde jeweils ein Erstisolat von Serratia marcescens, Escherichia coli und erstmalig Proteus mirabilis im Harn mit Imipenemresistenz nachgewiesen.

Im Vergleich zu 2014 wurden zwei zusätzliche *Klebsiella sp.* diagnostiziert: *K. pneumoniae* (n=46) überwiegt deutlich gegenüber *K. oxytoca* (n=3), wie schon in den Vorjahren. Andere *Klebsiella*-Spezies mit erwiesener in-vitro-Resistenz gegenüber Imipenem wurden bislang nicht beobachtet.

2015 wurden 11 Imipenem-resistente *Enterobacter sp.* nachgewiesen; eine Zunahme von drei Erstisolaten gegenüber 2014. Analog zu den Vorjahren überwiegt hier *E. cloacae* (n=8) gegenüber *E. aerogenes* (n=3). Bei *Citrobacter freundii*, kam es zu einem ausgeprägten Anstieg von einem Isolat 2014 zu sieben Isolaten 2015.

Imipenem-resistente Erreger wurden 2015 zur Hälfte aus dem Harn isoliert (n=37, 52,9%) gefolgt von Sputum (n=12, 17,1%), Abstrichen (n=8, 11,4%), Katheterspitzen (7, 10,0%) und anderen Materialien. In Blutkulturen wurde dreimal ein Imipenem-resistenter Keim isoliert.

Sechzig Prozent der Isolate wurden von peripheren Krankenhäusern isoliert, insbesondere von Stationen mit Langzeitpflege. Zehn Prozent der PatientInnen gaben anamnestisch einen Auslandsaufenthalt an. Sechzehn (22,9%) der PatientInnen waren zur Zeit der Probenabnahme auf einer Intensivmedizinischen Station in stationärer Betreuung, drei auf einer transplantationschirurgischen Station. Männer waren mit 60% häufiger betroffen als Frauen. PatientInnen waren zwischen einem und 90 Jahre alt (Medianalter 65,5 Jahre) (Abb. 6).

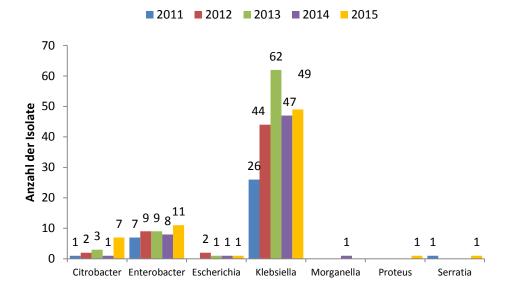


Abbildung 5: Verteilung von Imipenem-resistenten Enterobakteriazeae in absoluten Zahlen, 2011-2015

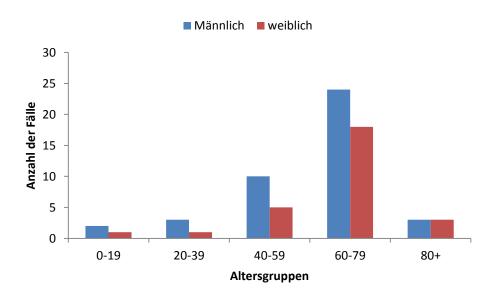


Abbildung 6: Alters- und Geschlechtsverteilung von PatientInnen mit Imipenemresistenten Erregern, $2015\ (n=70)$

Gram-negative Erreger können durch verschiedene Mechanismen eine Resistenz gegenüber Carbapenem-Antibiotika entwickeln: (i) Produktion von Betalaktamasen (sogenannte "Carbapenemasen", die nicht nur Penicilline und Cephalosporine, sondern auch Antibiotika der Klasse der Carbapeneme inhibieren), (ii) verminderter Antibiotikainflux durch Porinverlust, (iii) gesteigerter Antibiotikaefflux, (iv) Target-Modifikation. Die häufigsten Resistenzgene (KPC, VIM, IMP, OXA-48, NDM-1) welche für Carbapenemasen kodieren, werden an der Sektion für Hygiene und Medizinische Mikrobiologie der Medizinischen Universität Innsbruck mittels PCR nachgewiesen.

Im Jahre 2015 konnten dadurch bei 98,6% (70/71) der getesteten Isolate Carbapenemasen identifiziert werden.

Unter Carbapenemase resistenten Keimen mit KPC Testung (n=69, ein Isolat wurde nicht getestet), konnte mit Abstand am häufigsten **KPC** (*Klebsiella-Pneumoniae-*Carbapenemase) (n=45, 65,2%) detektiert werden (zum überwiegenden Teil in *K. pneumoniae* Isolaten, jedoch auch dreimal bei *Citrobacter freundii Isolaten*).

VIM (Verona-Integron-encoded **m**etallo-β-lactamase), welches hauptsächlich bei *Enterobacter sp.* gefunden wurde, wurde in 18/69 Isolaten (26,1%) nachgewiesen; bei einem Isolat wurde kein VIM Nachweis durchgeführt. Neben *Enterobacter sp.* Isolaten (n=9) konnten auch *Klebsiella oxytoca* (n=3), *Citrobacter freundii* (n=4), *Klebsiella pneumoniae* (n=1) und *Escherichia coli* (n=1) mit VIM assoziiert werden.

OXA-48, IMP sowie **NDM-1** konnten 2015 nicht nachgewiesen werden.

Carbapenemase-bildende Bakterien sind nicht virulenter als sensible Vertreter der gleichen Spezies, jedoch sind sie aufgrund ihrer Multiresistenz schwerer zu therapieren. Diese Keime sind *in-vitro* in vielen Fällen lediglich noch auf Colistin und auf Tigezyklin empfindlich, wenngleich schon 2014 bereits vereinzelt Stämme aufgetreten sind, welche eine reduzierte (n=5) oder fehlende in-vitro Empfindlichkeit gegenüber Tigezyklin zeigten (n=3). Im Jahr 2015 konnten zwei Tigezyklin-resistente Keime isoliert werden: jeweils eine *Klebsiella pneumoniae* von einem Abstrich und ein *Proteus mirabilis* im Harn.

5.2 Multiresistente Nonfermenter

Nonfermenter sind eine taxonomisch heterogene Gruppe von Gram-negativen Bakterienspezies, welche sich durch eine fehlende Fermentationsfähigkeit auszeichnen. Nonfermenter zeichnen sich generell durch eine hohe intrinsische Resistenz gegenüber diversen Antibiotikaklassen aus. Da die Resistenzlage bei den klinisch relevanten Nonfermenterspezies *Pseudomonas aeruginosa* und *Acinetobacter sp.* in den vergangenen Jahren deutlich zugenommen hat und diese Keime auch krankenhaushygienisch eine wichtige Rolle spielen, hat das Robert-Koch-Institut (RKI) in Deutschland im Jahre 2012 Empfehlungen zum Vorgehen bei Auftreten dieser multiresistenten Nonfermenter publiziert. In diesem Zusammenhang wurde auch der Versuch einer Vereinheitlichung der

Resistenzklassifizierung unternommen, indem die sogenannte MRGN (für **m**ulti**r**esistente **G**ram-**n**egative Bakterien) Klassifikation geschaffen wurde. Hierbei werden Gram-negative Bakterien in 3MRGN (resistent gegenüber 3 von 4 definierten Antibiotikaklassen) und 4MRGN (resistent gegenüber 4 von 4 definierten Antibiotikaklassen) eingeteilt (für detaillierte Informationen sei auf die entsprechende Publikation des RKI verwiesen).

Aufgrund der zunehmenden Relevanz der multiresistenten Nonfermenter erscheint eine Erwähnung notwendig:

Im Jahre 2015 wurde bei 75 Patient/Innen ein 3MRGN oder 4MRGN Nonfermenter nachgewiesen. Die dominante Spezies war *Pseudomonas aeruginosa* (60, Erstisolate, 80,0%), gefolgt von *Acinetobacter baumannii* (11 Erstisolate, 14,7%). Darüber hinaus konnte zweimal *Pseudomonas mosselii* und je einmal *Acinetobacter sp.* und *Alcaligenes xylosoxidans* nachgewiesen werden.

Bezüglich der Resistenzklassifikation waren von den erfassten 62 *Pseudomonas sp.* Stämmen 49 (79%) als 4MRGN nach RKI einzustufen, während alle zwölf *Acinetobacter sp-*Stämmen als 4MRGN zu klassifizieren waren. Das *Alcaligenes sp.*-Isolat war als 3MRGN zu werten.

Multiresistente Nonfermenter scheinen primär ein Problem im Bereich der stationären Versorgung zu sein: 81,3% der detektierten 3MRGN oder 4MRGN Nonfermenter-Isolate stammen aus dem stationären Versorgungsbereich. Etwas mehr als ein Drittel der PatientInnen waren zur Zeit der Probenabnahme intensivpflichtig (36,0%). Von diesen 27 positiven Isolaten konnten 24 der Gruppe der 4MRGN zugeordnet werden. Nur fünf der Isolate (6,7%) kamen von einer transplantationschirurgischen Abteilung, vier davon wurden als 4MRGN klassifiziert. Vierzehn Isolate (18,7%) wurden bei ambulanten PatientInnen nachgewiesen. Sechs der Isolate wurden bei Patienten aus dem niedergelassenen Bereich diagnostiziert, davon vier 4MRGN, ein *Acinetobacter sp.* und fünf *Pseudomonas sp.*

Am häufigsten wurden multiresistente Nonfermenter von Abstrichen diagnostiziert (38,7%), gefolgt von Harnkulturen (33,3%) und Blutkulturen (5,3%).

Männer waren mit 64% häufiger als Frauen betroffen. PatientInnen waren bei Diagnosestellung zwischen 27 und 99 Jahre alt (Medianwert 63 Jahre) (Abb.7).

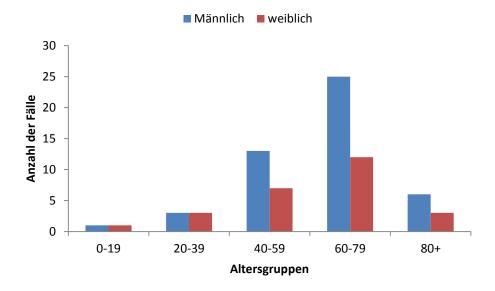


Abbildung 7: Alters- und Geschlechtsverteilung von PatientInnen mit Nonfermentern, 2015 (n=75)

5.3 Methicillin-resistente Staphylococcus aureus (MRSA)

Methicillin-resistente *Staphylococcus aureus* (MRSA) sind weltweit verbreitet und besitzen große Bedeutung als Erreger von nosokomialen Infektionen. Der Großteil der MRSA-Stämme wird als **haMRSA** ("hospital-acquired" Typ oder Krankenhaus-assoziiert) bezeichnet und erfüllt mindestens eines der folgenden Kriterien:

- Identifizierung des Keimes nach mindestens 48 Stunden Hospitalisierung,
- Patienten-Anamnese mit Hospitalisierung, chirurgischem Eingriff, Dialyse, Pflegeheim,
- Patient ist Träger eines Katheters oder anderen Fremdkörpers,
- bekannter MRSA-Trägerstatus.

Im Jahr 2015 wurde an der Sektion für Hygiene und Medizinische Mikrobiologie bei 162 PatientInnen ein MRSA nachgewiesen, im Jahr zuvor bei 163 PatientInnen.

Community-acquired MRSA (caMRSA)

Wird ein MRSA Stamm in der nicht-hospitalisierten Bevölkerung ohne Vorhandensein von bekannten Risikofaktoren nachgewiesen, handelt es sich vorwiegend um einen sogenannten **caMRSA**, "community-associated" Typ.

Im Vergleich zu haMRSA Stämmen zeigen caMRSA Stämme in manchen Fällen eine höhere Empfindlichkeit gegenüber einigen Antibiotika (z.B. Clindamycin, Azithromycin).

Eine besondere Eigenschaft der caMRSA-Stämme ist die Fähigkeit zur Bildung von Panton-Valentine Leukozidin (PVL), einem porenbildenden Toxin, welche in den meisten Fällen vorhanden ist (dennoch sind PVL-negative caMRSA beschrieben).

Dieser Virulenzfaktor wird durch das *lukS-lukF*-Gen kodiert, welches mittels PCR nachgewiesen werden kann. PVL-positive MRSA (PVL⁺-MRSA) verursachen häufig schwere Haut- und Weichteilinfektionen.

2015 wurden an der Sektion für Hygiene und Medizinische Mikrobiologie (HMM) der Medizinischen Universität Innsbruck 162 MRSA nachgewiesen. Bei 41 der 162 im Jahre 2015 gezüchteten MRSA (Erstisolate) wurde eine PCR-Untersuchung auf *lukS-lukF* durchgeführt. Das *lukS-lukF*-Gen konnte in 46,3% (n=19) der untersuchten Erstisolate nachgewiesen werden. Diese MRSA konnten somit als PVL⁺-MRSA identifiziert werden.

Im Vergleich zum Vorjahr 2014 zeigte sich im Jahr 2015 keine nennenswerte Änderung. (Abb. 8).

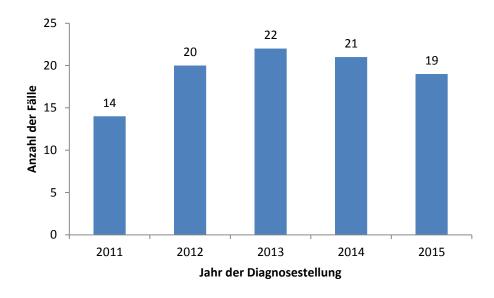


Abbildung 8: PVL+-MRSA in absoluten Zahlen nach Aufnahmestatus, 2011-2015

MRSA-Erstisolate (Infektion und Kolonisation) waren bei Männern häufiger (60,5%) als bei Frauen. PatientInnen mit MRSA waren zwischen 3 und 94 Jahre alt (Medianwert 66 Jahre). Bezüglich des mittleren Alters zeigte sich weder ein Unterschied zwischen Männern und

Frauen, noch zwischen ambulanten und stationären PatientInnen. Ein deutlicher Altersunterschied lag jedoch zwischen Personen mit PVL+ Erstisolat (Median 34,5 Jahre) gegenüber Personen mit negativen oder nicht getesteten PVL Erstisolat (71 Jahre; p< 0,001) (Abb. 9).

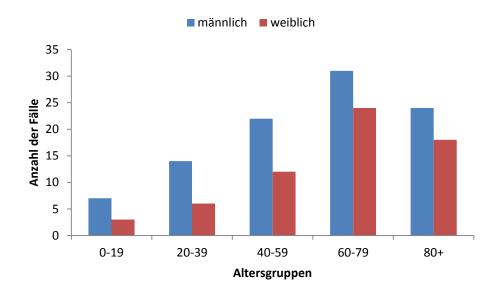


Abbildung 9: Alters- und Geschlechtsverteilung von PatientInnen mit MRSA, 2015 (n=161) (Von einer Person fehlt die Altersangabe)

Von den 19 an der HMM nachgewiesenen PVL⁺-MRSA-Stämmen im Jahr 2015 wurden 11 (64,7%) von (eitrigen) Haut- und Weichteilinfektionen (SSTI) isoliert; bei zwei Personen war die Diagnose unbekannt. Dies entspricht in etwa dem Prozentsatz der letzten Jahre.

5.4 Vancomycin-resistente Enterokokken (VRE)

Besonders von 2011 auf 2012 wurde ein massiver Anstieg von VRE an der Sektion für Hygiene und Medizinische Mikrobiologie der Medizinischen Universität Innsbruck registriert. Während der letzten drei Jahre war die Anzahl der VRE Erstisolate annähernd gleich, im Jahr 2015 kam es jedoch erneut zu einem leichten Anstieg von 56 auf 64 Erstisolate. (Abb. 10).

Wie in den Jahren zuvor wurde eine Vancomycinresistenz im Jahr 2015 hauptsächlich bei *Enterococcus faecium* Stämmen (96,9%) detektiert, und zweimal bei *E. faecalis*. Bei diesen Isolaten zeigte sich eine Resistenz gegenüber beiden Glykopeptidantibiotika (Vancomycin und Teicoplanin). Vierzehn der VRE-Isolate (22,2%) zeigten auch eine Linezolid-Resistenz (siehe unten), von einem Isolat ist die Empfindlichkeit gegenüber Linezolid nicht bekannt.

Vom LKI wurden 52 (81,3%) der VRE-Isolate im Jahr 2015 eingesandt. Circa ein Drittel der Patienten (n=21) mit positiven VRE-Isolaten waren zur Zeit der Probenabnahme intensivpflichtig (32,8%), und (14 Erstisolate)- etwa jedes fünfte- (21,9%) wurde von einer der transplantationschirurgischen Abteilungen detektiert.

Etwa ein Drittel der positiven Isolate stammten von Harnproben (29,0%), ein Fünftel (22,6%) von Abstrichen, 17,7% von Katheterspitzen, 9,7% von Stuhlproben und 4,8% von Blutkulturen. Der Rest stammte von anderen Proben.

Männer waren mit 59,4% häufiger als Frauen betroffen. PatientInnen waren bei Diagnosestellung zwischen 16 und 92 Jahre alt (Medianwert 65 Jahre). Das mittlere Alter zwischen Frauen (Median 69,5 Jahre) und Männern (Median 62 Jahre) war "borderline" signifikant unterschiedlich (p=0,051). (Abb. 11)

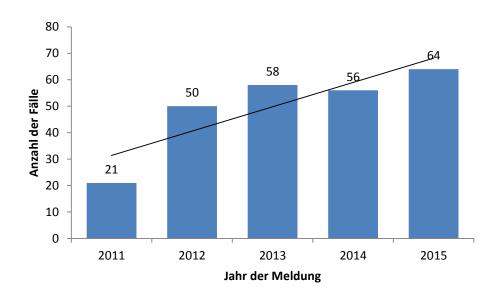


Abbildung 10: Vancomycinresistente Enterokokken (VRE) in absoluten Zahlen, 2011-2015

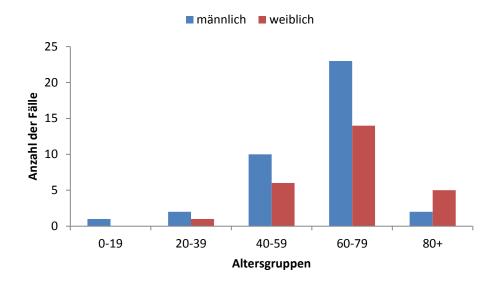


Abbildung 11: Alters- und Geschlechtsverteilung von PatientInnen mit VRE, 2015 (n=64)

5.5 Linezolidresistenz bei gram-positiven Erregern

Das Oxazolidinonantibiotikum Linezolid (Zyvoxid®) zählt derzeit neben den Glykopeptidantibiotika zu den potentesten Substanzen im Einsatz gegen gram-positive Erreger, auch und besonders gegen multiresistente Vertreter wie beispielsweise MRSA oder VRE. Seit einiger Zeit werden jedoch gram-positive Keime mit reduzierter oder fehlender gegenüber Linezolid beobachtet. Empfindlichkeit Im Vordergrund Staphylokokken (v.a. Staphylococcus epidermidis) und Enterokokken (v.a. Enterococcus faecium) und es wurden auch bereits Keime mit kombinierter Resistenz gegenüber Glykopeptidantibiotika (Vancomycin, Teicoplanin) und Linezolid beobachtet (v.a. E. faecium).

5.5.1 Linezolidresistenz bei Staphylokokken (LRS)

Im Jahre 2015 wurden an der HMM 61 Staphylokokken-Isolate mit *in-vitro* Resistenz gegenüber Linezolid beobachtet. Dies stellt eine leichte Abnahme im Vergleich zum Vorjahr dar (Abb. 12). Alle Isolate waren der Spezies *Staphylococcus epidermidis* zuzuordnen (Abb 12).

Die überwiegende Mehrheit der LRS-Isolate wurde bei stationär behandelten PatientInnen detektiert (96,7%). Lediglich zwei der Isolate wurden von ambulant versorgten PatientInnen isoliert. Der Großteil der LRS-Isolate (n=52) wurde von PatientInnen der Klinik Innsbruck

isoliert (85,2%). Beinahe die Hälfte der PatientInnen mit positiven LRS-Isolaten waren zur Zeit der Probenabnahme intensivpflichtig (46,2%), und beinahe ein Drittel (31,5%) kamen von einer transplantationschirurgischen Abteilung.

Knapp die Hälfte der Proben im Jahr 2015 waren Katheterspitzen (47,5%), gefolgt von Blutkulturen (34,4%), Abstrichen (6,6%) und anderen.

Männer waren häufiger betroffen als Frauen (70,5%). PatientInnen waren zwischen 18 und 86 Jahre alt (Medianwert 67 Jahre). Das mittlere Alter unterschied sich nicht wesentlich zwischen Frauen (66 Jahre) und Männern (68,5 Jahre) (Abb. 12).

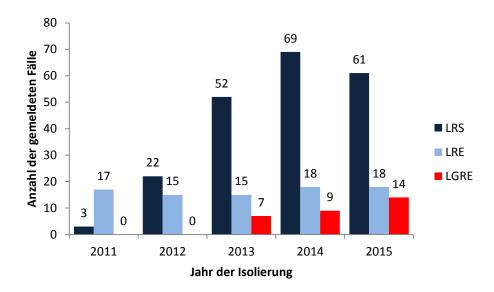


Abbildung 12: Linezolid-Resistenz bei Staphylokokken (LRS) und Enterokokken (LRE), sowie kombiniert Linezolid- sowie Glykopeptid-resistente Enterokokken (LGRE) in absoluten Zahlen, 2011-2015

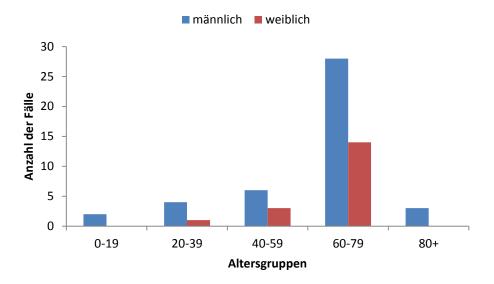


Abbildung 12: Alters- und Geschlechtsverteilung von PatientInnen mit LRS, 2015 (n=61)

5.5.2 Linezolidresistenz bei Enterokokken (LRE)

Bei den Enterokokken zeigte sich in den vergangenen Jahren erfreulicherweise keine Zunahme an Linezolid-resistenten Isolaten. Auch im Jahr 2015 war die Situation in Tirol mit 18 LRE-Isolaten stabil (Abb. 13). Alle Isolate im Jahr 2015 waren der Spezies war *E. faecium* zuzuordnen. Ein LRE-Isolat wurde in einem peripheren Krankenhaus gefunden, ein weiteres im ambulanten Bereich der Klinik. Etwa ein Drittel der Patienten mit positiven LRE-Isolaten waren zur Zeit der Probenabnahme intensivpflichtig (27,8%), und mehr als ein Drittel (38,9%) kamen von einer der Transplantationsabteilungen.

Von den 18 Proben im Jahr 2015 waren acht Stuhlproben vier Katheterspitzen, jeweils zwei Blutkulturen, Abstriche und Punktate.

Männer waren mit 55,6% etwas häufiger betroffen als Frauen, die Aussagekraft ist aber aufgrund der geringen Anzahl von 18 LRE-Isolaten limitiert. PatientInnen waren zwischen 49 und 83 Jahre alt (Medianwert 63,5 Jahre). (Abb. 14)

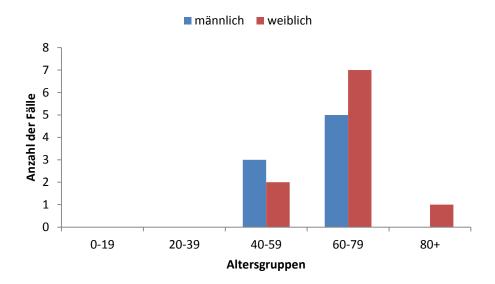


Abbildung 14: Alters- und Geschlechtsverteilung von PatientInnen mit LRE, 2015 (n=18)

Seit 2013 werden auch zunehmend *Enterococcus faecium* Isolate mit kombinierter Resistenz gegenüber Vancomycin/Teicoplanin sowie Linezolid detektiert (LGRE). Waren dies 2013 noch 7 Isolate, stieg die Anzahl 2014 auf 9 Isolate und 2015 auf 14 Isolate (Abb. 14). Somit waren 2015 bereits 78% der LRE zugleich resistent gegenüber den Glykopeptidantibiotika Vancomycin und Teicoplanin.

Verbrauch von Vancomycin, Teicoplanin, Linezolid von 2009 - 2015 am Landes-Krankenhaus Innsbruck in Gramm

Antibiotikum	Vancomycin	Teicoplanin	Linezolid	
2009	19,660 iv*	177 iv	0.796 no iv	
2009	1,608 po**	1//10	9,786 po, iv	
2010	14,680 iv	108 iv	0.624 no. iv	
2010	1,153 po	106 IV	9,624 po, iv	
2011	8,27 iv	88 iv	10,326 po, iv	
2011	920 po	00 IV		
2012	7,418 iv	658 iv	10 488 no iv	
2012	1,203 po	038 10	10,488 po, iv	
2013	6,695 iv	964 iv	10.022 == :	
2015	1,043 po	904 IV	10,032 po, iv	
2014	7,130 iv	1.022 :	9 707 mg iv	
2014	988 po	1,033 iv	8,727 po, iv	
2015	8,950 iv	1,021 iv	8,380 po, iv	
2013	1,168 po			

^{*} iv= parenteral

Kommentar:

2015 scheint der geringere Verbrauch von Teicoplanin und Linezolid gegenüber den Vorjahren durch eine Steigerung des Vancomycin-Verbrauchs kompensiert worden zu sein!

^{**} po= per os

6. Definition multi-resistente Erreger

			•			
Antibiotika-	Leitsubstanz	Enteroba	akterien	P.aeruginosa	Acinetol	bacter
Gruppe		3MRGN*4MRGN**		3MRGN*	bauman	nii
				Nur eine der	3MRGN*	4MRGN**
Acylureido-	Piperacillin	R	R	vier Antibiotika-	R	R
penicilline				gruppen		
3./4.Generations-	Cefotaxim	R	R	wirksam	R	R
cephalosporine	und/oder					
	Ceftazidim			4MRGN**		
Carbapeneme	Imipenem	S	R	(wie bei	S	R
	und/oder			Enterobakterien)		
	Meropenem					
Fluorchinolone	Ciprofloxacin	R	R	1	R	R

^{*3}MRGN (Multiresistente-gramnegative Stäbchen mit Resistenz gegen 3 der 4 Antibiotikagruppen)

Modifiziert nach den Empfehlungen der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) 2012 des Robert-Koch-Institutes Berlin

Einteilung nach dem Gesichtspunkt der klinischen Relevanz der Resistenz

^{**4}MRGN (Multiresistente-gramnegative Stäbchen mit Resistenz gegen vier der 4 Antibiotikagruppen)

Mit freundlicher Unterstützung von:

