

Resistenzbericht 2009

erstellt von:

Dr. Manfred FILLE

Dr. Johann HAUSDORFER

Univ.Prof.Dr. Cornelia LASS-FLÖRL

Univ.Prof.Dr. Günter WEISS

Sektion für Hygiene und Medizinische Mikrobiologie und Universitätsklinik für Innere Medizin I, Klinische Infektiologie und Immunologie Medizinische Universität Innsbruck Vorwort

Die Sektion für Hygiene und Medizinische Mikrobiologie ist bemüht, einen Überblick über

die epidemiologische Situation des Jahres 2009 für weite Teile Tirols zu geben.

Es sollen die wichtigsten Erreger und deren Resistenzen, sowie Problemkeime übersichtlich

dargestellt werden, um präventive Maßnahmen in der Praxis umsetzen zu können.

Antibiotika werden erfolgreich gegen viele schwere Infektionskrankheiten eingesetzt.

Verstärkt treten aber auch schwere bis nicht beherrschbare Infektionen auf. Dies stellt für die

Fachwelt aber auch für die öffentlichen Gesundheitsdienste eine große Herausforderung dar.

Der Bericht soll unter anderem helfen, den zielgerichteten Einsatz von Antibiotika-Therapien

zu ermöglichen.

An dieser Stelle möchte ich mich bei Herrn Dr. Manfred Fille und allen MitarbeiterInnen für

diese Berichterstellung und das Engagement herzlich bedanken.

20x- 10)

Univ.Prof.Dr. Cornelia Lass-Flörl

2

Inhaltsverzeichnis

- 1. Einleitung
- 2. <u>Probenauswertung und Resistenzdaten am LKI</u>
- 2.1 Keim- und Resistenzspektrum in Blutkulturen
- 2.2 S.aureus und MRSA (alle Untersuchungsmaterialien)
- 2.3 E.coli- und ESBL- E.coli Harn
- 2.4 Keim- und Resistenzspektrum des Respirationstraktes (beta- hämolysierende Streptokokken der Gruppe A, S. pneumoniae, und H. influenzae)
- 3. Probenauswertung und Resistenzdaten aus dem niedergelassenen Bereich
- 3.1 Keim- und Resistenzspektrum des Respirationstraktes (beta- hämolysierende Streptokokken der Gruppe A, S. pneumoniae, und H. influenzae)
- 3.2 S. aureus und MRSA (alle Untersuchungsmaterialien)
- 3.3 E. coli- und ESBL- E. coli Harn
- 4. **LKI und niedergelassener Bereich**
- 4.1 P. aeruginosa (Ohrabstriche, Trachealsekret und oberer Respirationstrakt)
- 4.2 Klebsiella pneumoniae (alle Materialien)
- 4.3 P. mirabilis (Harn)
- 4.4 Hefepilze aus Blutkulturen (alle Einsender)
- 5. Empfohlene Maßnahmen

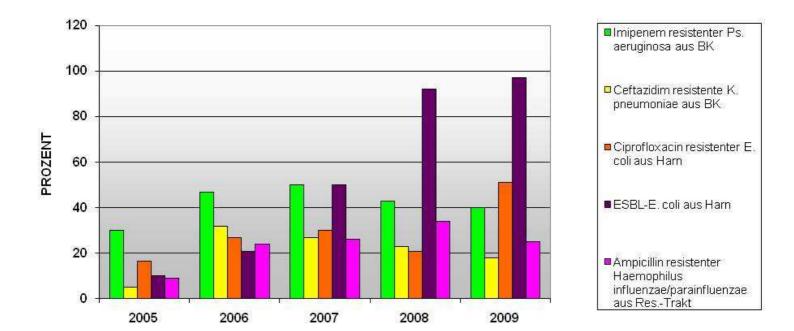
Trends 2009

- 1. Carbapeneme zeigen weiterhin eine ausgezeichnete Empfindlichkeit bei Enterobakteriazeen, die Resistenzrate bei Pseudomonaden ist sinkend.
- 2. Die MRSA-Nachweisrate liegt bei Blutkulturen bei 10%, "Community-acquired-MRSA" ist sehr selten (5 nachgewiesene Fälle).
- 3. Die Nachweisrate von Vancomycin- resistenten- Enterokokken liegt in allen Proben unter 3%.
- 4. Fluconazol- sensible Candida albicans ist mit 60% bei invasiven Hefepilzinfektionen der am häufigsten nachgewiesene Erreger.

- 1. Der Anteil der ESBL-bildenden E.coli in Harnisolaten ist am LKI mit 16% vs. 9% in der Praxis deutlich höher.
- 2. Ein sporadisches Auftreten von Carbapenem- resistenten Enterobakteriazeen wurde beobachtet.
- 3. Die Inzidenz von Infektionen mit invasiven Zygomyzeten ist konstant geblieben.

ÜBERSICHT:

Problemkeime und multiresistente Erreger: Trends von 2005 – 2009

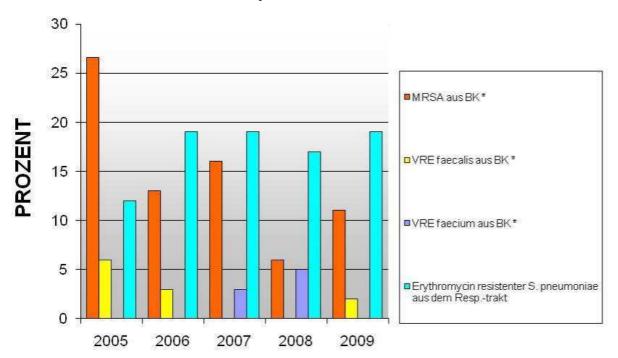

Resistenzen in % (resistente Isolate / Anzahl getesteter Isolate)

Gram-negative Erreger	Pseudomonas aeruginosa	Escherichia coli (inkl. ESBL- E. coli) **	ESBL- bildendende Escherichia coli	ESBL - bildende Klebsiella pneumoniae	Haemophilus influenzae/ parainfluenzae
Material	BK *	Harn	Harn	BK *	Respirationstrakt
Antibiotikum	Imipenem	Ciprofloxacin	Ciprofloxacin	Ceftazidim	Ampicillin
2005	30%	15%	10%	5%	9%
2003	(7/23)	(455/2992)	(54/563)	(1/20)	(8/91)
2006	47%	25%	21%	32%	24%
2006	(8/17)	(385/1529)	(94/450)	(6/19)	(19/80)
2007	50%	33%	50%	27%	26%
2007	(9/18)	(1054/3159)	(265/530)	(12/44)	(30/114)
2008	43%	30%	92%	23%	34%
2000	(6/14)	(807/2682)	(316/344)	(10/47)	(24/70)
2009	35%	51%	97%	18%	25%
2007	(7/20)	(52/102)	(29/30)	(3/17)	(19/76)

^{*} BK, Blutkulturen

^{**} Extended-spectrum-beta-lactamase produzierende E. coli

Gram-negative Problemkeime



Anzahl der resistenten Stämme in Prozent, Innsbruck, LKI BK, Blutkultur

Gram-positive Erreger	Staphylococcus aureus (Oxacillin-resistent, MRSA)	Enterococcus faecalis (Vancomycin- resistent, VRE)	Enterococcus faecium (Vancomycin- resistent, VRE)	S. pneumoniae
Material	BK *	BK *	BK *	Respirationstrakt
Antibiotikum	Oxacillin	Vancomycin	Vancomycin	Azithromycin
2005	26%	6%	0%	12%
2003	(17/64)	(2/33)	(0/20)	(28/235)
2006	13%	3%	0%	19%
2000	(8/62)	(1/38)	(0/28)	(25/134)
2007	16%	0%	3%	19%
2007	(12/75)	(0/65)	(1/38)	(44/234)
2008	6%	0%	5%	17%
2008	(4/64)	(0/37)	(2/42)	(11/63)
2009	11%	2,2%	0%	19%
2007	(8/74)	(1/44)	(0/33)	(19/103)

^{*} BK, Blutkulturen

Gram-positive Problemkeime

Anzahl der resistenten Stämme in Prozent, Innsbruck, LKI * BK, Blutkulturen

1. Einleitung

Im bakteriologisch-mykologischen Labor an der Sektion Hygiene und Med. Mikrobiologie der Medizinischen Universität Innsbruck wird Probenmaterial der Universitätsklinik Innsbruck sowie anderer öffentlicher und privater Krankenanstalten und von niedergelassenen Ärzten und Fachärzten in Tirol untersucht. Im Jahr 2009 wurden insgesamt 186.815 Proben von insgesamt 63.993 Patienten bearbeitet.

Die Keim- und Resistenzspektra werden sowohl für verschiedene Körperregionen, als auch für den ambulanten und stationären Bereich getrennt angeführt. Es wird auch auf Problemkeime wie z.B. Methicillin- resistente Staphylokokken (Staphylococcus aureus, MRSA), Vancomycin- resistente Enterokokken (VRE) oder Breitspektrum- Beta- Laktamase (ESBL)- bildende Enterobakteriazeen ("extended- spectrum- beta- lactamase" =engl., Abk.: "ESBL") eingegangen.

Selbstverständlich wurde, den Richtlinien entsprechend nur das Erstisolat eines Patienten in die Auswertung aufgenommen.

Im Jahr 2008 wurden von der "Arbeitsgruppe Antibiotikaresistenz" bestimmte Indikatorkeime und – Antibiotika für Klinik und niedergelassene Ärzte in allen Bundesländern ausgearbeitet. Dadurch sollen in den einzelnen Bundesländern erhobene Daten österreichweit vergleichbar werden und lokale Unterschiede im Resistenzverhalten erkennen lassen. Die Daten werden jährlich im Resistenzbericht (AURES) des Bundesministeriums für Gesundheit (BMG) veröffentlicht.

Unser diesjähriger Resistenzbericht beinhaltet daher gegenüber seinen Vorgängern formale und inhaltliche Änderungen: Um die Fülle der Daten für den interessierten Leser klarer darzustellen wurde der Text gestrafft, gleichzeitig aber mehrere wichtige Antibiotika und Erreger in die Auswertung neu mit aufgenommen und in Tabellenform dargestellt

Die Ergebnisse sind, so hoffen wir, für den klinisch tätigen Arzt brauchbar.

Leitlinien zur mikrobiologischen Probenabnahme sowie für antibiotische, antimykotische und antivirale Therapieempfehlungen finden Sie im "Innsbrucker Infektionsbüchlein" publiziert.

Telefonische Befundauskunft:

Bakteriologie-Labor 0512-9003-70750

Probenannahmezeiten:

Montag – Freitag von 08.00 – 18.00 Uhr

Samstag von 08.00 – 11.00 Uhr und 16.00 - 17.00 Uhr

Sonn- und Feiertag von 08.00 – 10.00 Uhr

MitarbeiterInnen der Bakterologie:

AIGNER Maria
FILLE Manfred
GRIF Katharina
HAUSDORFER Johann
HELLER Ingrid
LASS-FLÖRL Cornelia, Direktorin
MANGO Monica
ORTH Dorothea
PRODINGER Wolfgang

Schwerpunkte der Bakteriologie:

Allgemeine Bakteriologie Mykologie Parasitologie TBC Molekulare Diagnostik Molekulare Epidemiologie

2. Probenauswertung Landeskrankenhaus Innsbruck (LKI)

Im Jahr 2009 gelangten insgesamt 111.171 Proben von Stationen und Ambulanzen des LKI zur Einsendung, Harne (23%) und Blutkulturen (22%) machen fast die Hälfte der Einsendungen aus. Auf Intensivstationen werden im Durchschnitt ca. 18 Proben /Patient, auf Normalstationen etwa 3 Proben /Patient eingeschickt.

2.1. Keim- und Resistenzspektrum in Blutkulturen

Resistenzen in % (resistente Isolate / Anzahl getesteter Isolate)

Gram-neg.	Ciprofloxacin	Cefotaxim	Piperacillin/ Tazobactam	Gentamicin	Imipenem
E.coli	51%	36%	22%	13%	0%
(inkl. ESBL*)	(52/102)	(37/102)	(21/96)	(13/102)	(0/102)
E P ECDI	97%	100%	58%	22%	0%
E. coli- ESBL	(29/30)	(30/30)	(16/32)	(8/36)	(0/102)
P. aeruginosa	40%	na**	6%	30%	35%
	(8/40)	na*	(1/17)	(6/20)	(7/20)
K. pneumoniae	18%	18%	18%	6%	12%
F	(3/17)	(3/17)	(3/17)	(1/17)	(2/17)

^{*}Extended-spectrum-beta-lactamase

^{**}na, nicht ausgetestet

Gram-pos.	Trim. Sulf.	Tetrazyklin	Gentamicin	Clindamycin	Rifampicin
S.aureus	0%	7%	4%	22%	0%
(inkl. MRSA)	(0/74)	(5/74)	(3/74)	(16/74)	(0/74)
	0%	25%	25%	50%	0%
MRSA	(0/8)	(2/8)	(2/8)	(4/8)	(0/8)

2.2. S. aureus und MRSA (Abstriche, Punktate, Blutkulturen)

S.aureus		Resistenz %		
(inkl.MRSA)	Getestet	Sensibel	Resistent	Resistenz %
Penicillin	1510	198	1312	86
Cefoxitin	1560	1460	100	6,4
Gentamicin	1560	1493	67	4,3
Tetrazyklin	1560	1492	68	4,3
Azithromycin	1510	1175	335	22,2
Clindamycin	1510	1208	302	20
Fusidinsäure	1180	1169	11	0,9
TrimSulf.	1559	1544	15	0,96
Vancomycin	1148	1148	0	0
Linezolid	125	125	0	0
Fosfomycin	1151	1120	31	2,7
Rifampicin	1133	1129	4	0,35
Moxifloxacin	1502	1402	100	6,66

MRSA	Isolate			Resistenz %
	Getestet	Sensibel	Resistent	Resistenz /0
Gentamicin	100	62	38	38
Tetrazyklin	100	90	10	10
Azithromycin	100	31	69	69
Clindamycin	100	35	65	65
Fusidinsäure	100	100	0	0
TrimSulf.	100	100	0	0
Vancomycin	100	100	0	0
Linezolid	41	41	0	0
Fosfomycin	100	69	31	31
Rifampicin	100	100	0	0
Moxifloxacin	88	16	72	81,8
Mupirocin	13	12	1	1

Die Resistenzraten von Azithromycin, Clindamycin (bei Vorliegen von induzierbarer Clindamycin- Resistenz wird Clindamycin resistent befundet) lagen im Bereich zwischen 20% und 22%, bei den übrigen Antibiotika fanden sich mit Ausnahme von Penicillin G (86%) jeweils ein Anteil von weniger als 10% resistenter Stämme. Die MRSA- Isolate zeigten erwartungsgemäß deutlich häufiger Resistenzen gegen andere Substanzklassen als S.aureus. Der Anteil von MRSA an S.aureus– Isolaten beträgt etwa 6%, dies entspricht einer allgemein eher fallenden MRSA-Nachweisrate in Europa (EARSS Annual Report 2008).

2.3. E. coli und ESBL- E.coli

(Uricult, Katheterharn und Nativharn)

Escherichia coli			Resistenz %	
(inkl. ESBL)	Getestet	Sensibel	Resistent	Resistenz /0
Ampicillin	2919	1051	1868	64
Amp. + Clav.	2907	2093	814	28
Cefazolin	2901	2176	725	25
Cefuroxim-axetil	2919	2394	525	18
Cefixim	2919	2423	496	17
TrimSulf.	2920	1810	1110	38
Nitrofurantoin	2919	2715	204	7
Ciprofloxacin	2919	1985	934	32
Pivmecillinam	2902	2583	319	11
Fosfomycin	844	641	203	24
Gentamicin	2895	2721	174	6

E.coli- ESBL		Resistenz %		
E.Con- ESBL	Getestet	Sensibel	Resistent	Resistenz /0
Amp.+Clav.	464	0	464	100
Trim.+Sulf.	464	60	404	87
Nitrofurantoin	464	418	46	10
Ciprofloxacin	464	38	426	92
Pivmecillinam	460	373	87	19
Fosfomycin	414	641	182	44
Gentamicin	460	428	32	7

Ca. 16% der in Harnen nachgewiesenen E.coli- Isolate sind Breitspektrum- Betalaktamase-Bildner (sog. ESBL- E. coli); d.h. mit Ausnahme der Carbapeneme werden <u>alle</u> Beta-Laktam-Antibiotika inaktiviert. Die meisten Harneinsendungen mit ESBL- positivem E.coli stammen von der urologischen Ambulanz des LKI. Der Anteil von ESBL- bildenden E.coli in Harnen mit E.coli- Nachweis hat also im Vergleich zu 2008 (12%) leicht zugenommen, auch die Ampicillin- Resistenz hat zugenommen (56% 2008; 64% 2009). Nur 1 von 10 ESBL- E. coli-Isolaten ist auf Gyrasehemmer (z.B. Ciprofloxacin) empfindlich. Hohe Resistenzraten finden sich auch gegen Trimethoprim- Sulfamethoxazol und gegen Fosfomycin. Die Zunahme von ESBL- E. coli ist ein weltweites Phänomen (R. Canton, Curr Opin Microbiol. 2006) und kein Tiroler Spezifikum!

2.4. Erreger des Respirationstrakts

(Abstriche, Sputa, bronchoalveoläre Lavagen)

ß-häm. Streptokokken		D : 14 0/		
der Gruppe A	Getestet	Sensibel	Resistent	Resistenz %
Penicillin	63	63	0	0
Azithromycin	63	58	5	7,9
Moxifloxacin	63	62	1	1,58
S. pneumoniae				
Penicillin	103	103	0	0
Azithromycin	103	84	19	18,4
Moxifloxacin	103	103	0	0
H. influenzae				
Ampicillin	122	98	24	19,7
Amp.+Clav.	122	122	0	0
Moxifloxacin	122	122	0	0

Die Resistenzlage bei den häufigsten Erregern des oberen Respirationstrakts kann gegenüber dem Vorjahr als gleichbleibend beurteilt werden. Auffallend ist die weiterhin ausgezeichnete Wirksamkeit von Penicillin G bei Streptokokken. Resistenzen gegenüber Gyrasehemmern, sind, wie andernorts häufig berichtet (D. Hooper, Emerging Infectious Diseases 2001), sind bei uns bislang nicht nachzuweisen.

3. Probenauswertung und Resistenzdaten aus dem niedergelassenen Bereich

Im Jahr 2009 wurden insgesamt 39.035 Untersuchungsproben eingeschickt, wobei Stühle und Harne zusammen mehr als 60% stellen.

3.1. Erreger des Respirationstraktes

ß-häm. Streptokokken		Resistenz %		
der Gruppe A	Getestet	Sensibel	Resistent	ACSISTCHZ 70
Penicillin	187	187	0	0
Azithromycin	187	176	11	5,8
Moxifloxacin	187	183	4	2,1
S.pneumoniae				
Penicillin	115	115	0	0
Azithromycin	115	101	14	12,1
Moxifloxacin	115	114	1	0,87
H.influenzae				
Ampicillin	76	57	19	25
Amp. + Clav.	76	76	0	0
Moxifloxacin	76	76	0	0

Die Resistenzlage bei den häufigsten Erregern des oberen Respirationstrakts kann gegenüber dem Vorjahr als gleichbleibend beurteilt werden. Auffallend ist die weiterhin ausgezeichnete Wirksamkeit von Penicillin G bei Streptokokken. Resistenzen gegenüber Gyrasehemmern, sind, wie andernorts häufig berichtet (D. Hooper, Emerging Infectious Diseases 2001), sind bei uns bislang nicht nachzuweisen.

3.2. S. aureus und MRSA aus allen Untersuchungsmaterialien

S.aureus (inkl.		Resistenz %		
MRSA)	Getestet	Sensibel	Resistent	Resistenz 70
Penicillin	610	122	488	80
Cefoxitin	676	666	10	1,48
Gentamicin	676	656	20	2,96
Tetrazyklin	676	635	41	6,0
Azithromycin	610	482	128	20,9
Clindamycin	610	500	110	18,0
Fusidinsäure	86	86	0	0
TrimSulf.	674	667	7	1,03
Vancomycin	55	55	0	0
Linezolid	4	4	0	0
Fosfomycin	55	52	3	5,4
Rifampicin	51	51	0	0
Moxifloxacin	609	597	12	1,97
Moxifloxacin	8	3	5	62,5

MRSA	Getestet	Sensibel	Resistent	Resistenz %
Gentamicin	10	5	5	50
Tetrazyklin	10	9	1	10
Azithromycin	10	1	9	9
Clindamycin	10	1	9	9
Fusidinsäure	10	10	0	0
TrimSulf.	10	9	1	10
Vancomycin	10	10	0	0
Linezolid	10	10	0	0
Fosfomycin	10	7	3	3
Rifampicin	10	10	0	0
Moxifloxacin	8	3	5	62,5

Die Resistenzraten von Azithromycin, Clindamycin (bei Vorliegen von induzierbarer Clindamycin- Resistenz wird Clindamycin resistent befundet) lagen im Bereich zwischen 20% und 22%, bei den übrigen Antibiotika fanden sich mit Ausnahme von Penicillin G (86%) jeweils ein Anteil von weniger als 10% resistenter Stämme. Die MRSA- Isolate zeigten erwartungsgemäß deutlich häufiger Resistenzen gegen andere Substanzklassen als S.aureus. Der Anteil von MRSA an S.aureus- Isolaten beträgt etwa 6%, dies entspricht einer allgemein eher fallenden MRSA-Nachweisrate in Europa (EARSS Annual Report 2008).

3.3. E.coli und ESBL- E.coli

(Harnproben)
-------------	---

E. coli				
(inkl. ESBL)	Getestet	Sensibel	Resistent	Resistenz %
Ampicillin	3112	1307	1805	56
Amp. + Clav.	3104	2483	621	19,3
Cefazolin	3101	2574	527	16,4
Cefuroxim-axetil	3112	2770	342	10,6
Cefixim	3112	2801	311	9,7
TrimSulf.	3112	2085	1027	32
Nitrofurantoin	3111	2893	218	6,8
Ciprofloxacin	3112	2303	809	25,2
Pivmecillinam	3097	2880	217	6,7
Fosfomycin	364	258	106	38,5
Gentamicin	3102	2852	250	7,7

E.coli- ESBL	Isolate			Resistenz %
	Getestet	Sensibel	Resistent	Kesistenz /0
Amp. +Clav.	287	0	287	100
Trim.+Sulf.	287	40	247	71
Nitrofurantoin	287	247	40	11,5
Ciprofloxacin	287	20	267	77
Pivmecillinam	284	236	48	13,6
Fosfomycin	228	128	100	23
Gentamicin	285	231	54	15,4

Ca. 9% der in Harnen im niedergelassenen Bereich nachgewiesenen E.coli sind Breitspektrum- Betalaktamase- Bildner (sog. ESBL- E. coli). Diese Prozentzahl liegt also deutlich niedriger als bei Einsendungen aus den Universitätskliniken.

4. LKI und niedergelassener Bereich

4.1. P. aeruginosa (Ohrenabstriche, Trachealsekret und oberer Respirationstrakt)

P. aeruginosa		D:-4 0/		
(Ohrabstriche)	Getestet	Sensibel	Resistent	Resistenz %
Imipenem	221	190	31	14
Ciprofloxacin	449	400	49	10,9
Ceftazidim	223	194	29	13
Gentamicin	443	412	31	6,9
Piperacillin/Tazobactam	447	438	9	2
4.Gen.Cephalosporin	220	209	11	5

P. aeruginosa (Trachealsekret, oberer				
Respirationstrakt)	Getestet	Sensibel	Resistent	Resistenz %
Imipenem	568	506	62	10,9
Ciprofloxacin	573	493	80	13,96
Ceftazidim	349	297	52	14,9
Gentamicin	568	506	62	10,9
Piperacillin/Tazobactam	572	555	17	2,97
4.Gen.Cephalosporin	344	316	28	8,1

P. aeruginosa, ein gram-negatives Stäbchenbakterium und meist opportunistischer Erreger, wurde hinsichtlich seiner häufigsten Infektions (Kolonisations-) lokalisationen ausgewertet. Im Vergleich zu früheren Jahren ergibt sich bei Carbapenemen eine niedrigere Resistenzrate, ein Beleg dafür, dass Resistenzen auch abnehmen können.

4.2. Klebsiella pneumoniae (alle Materialien)

Klebsiella pneumoniae		Resistenz %		
(Abstriche, Sputa, Harne)	Getestet	Sensibel	Resistent	Resistenz /0
Amp. + Clav.	75	54	21	28
Cefazolin	72	48	24	33,3
Cefuroxim	71	51	20	28,1
Cefixim	75	57	18	24
Trim. + Sulf.	75	56	19	25,3
Ciprofloxacin	75	53	22	29,3
Fosfomycin	61	24	37	60,6
Gentamicin	75	63	13	17,3
Imipenem	73	69	4	5,4

Klebsiella pneumoniae wird als Erreger nosokomialer Infektionen wie Pneumonien, Sepsis und auch rezidivierender Infektionen des Harntrakts angesehen, dies erklärt auch die relativ hohe Resistenzrate gegenüber den gebräuchlichsten Antibiotika. Leider ist es in unserem Einsendebereich mittlerweile auch zum Auftreten von Carbapenem- resistenten Enterobakterien gekommen.

4.3. Proteus mirabilis (Harn)

Proteus mirabilis		Resistenz %		
(Harn)	Getestet	Sensibel	Resistent	Resistenz %
Ampicillin	540	389	151	28
Amp. + Clav.	540	518	22	4
Cefazolin	535	503	32	6
Cefuroxim- axetil	540	535	5	0,9
Cefixim	540	535	5	0,9
TrimSulf.	540	400	140	25,9
Nitrofurantoin	540	5	535	99
Ciprofloxacin	540	470	70	13
Pivmecillinam	540	459	81	15
Fosfomycin	98	93	5	5,1
Gentamicin	535	471	64	12

Proteus mirabilis ist ein häufiger Erreger von Harnwegsinfektionen beim älteren Menschen und Patienten mit anatomischen Anomalitäten der ableitenden Harnwege. Obwohl eine ESBL- Bildung und damit einhergehender Multiresistenz auch bei diesem Keim beschrieben ist, sind solche Stämme bei uns sehr selten. Daher ist die Resistenzlage für die gebräuchlichsten Antibiotika gegen Proteus als günstig zu werten.

4.4 Hefepilze aus Blutkulturen (alle Einsender)

Im Jahre 2009 wurden bei 69 Patienten 70 Candida-Isolate aus Blutkulturen gezüchtet, bei einem Patienten wurde eine Doppelinfektion mit C. albicans und C. glabrata nachgewiesen. Insgesamt war C. albicans mit 42 Isolaten die am häufigsten nachgewiesene Spezies (60%). Alle C. albicans-Isolate wurden gegenüber Fluconazol empfindlich getestet.

Weiters wurden nachgewiesen: C. glabrata (14 Isolate, welche meist intermediär oder resistent gegenüber Azolen befundet wurden), C. tropicalis (4 Isolate), C. parapsilosis (4 Isolate), C. krusei (3 Isolate, alle Azol- resistent), je einmal wurden C. guillerimondi, C. lusitaniae und Saccharomyces cerevisiae gezüchtet.

5. Empfohlene Maßnahmen

Die Bekämpfung resistenter Keime und deren Ausbreitung erfordert konsequentes und systematisches krankenhaushygienisches Management. Dazu gehören die Isolierung ("barrier nursing") der Patienten und Maßnahmen mit Desinfektionsmitteln, die den Anforderungskriterien der Österreichischen Gesellschaft für Hygiene, Mikrobiologie und Präventivmedizin (ÖGHM-Richtlinie) für die Prüfung und Bewertung chemischer Desinfektionsverfahren entsprechen. Sie müssen gegen alle multiresistenten Erreger wirksam sein.

Folgende Maßnahmen sollen bei Auftreten von Indikatorkeimen umgesetzt werden:

ESBL-bildende Klebsiella pneumoniae und Enterobacter-Isolate

- Reduktion des Selektionsdrucks: Verwendung von Antibiotika mit geringem Selektionsdruck im Sinne einer kalkulierten und möglichst gezielten Therapie; keine längerdauernde prophylaktische Gabe, Verwendung unterschiedlicher Antibiotika-Klassen für die gleiche Indikation, Vermeidung von Unterdosierungen (cave: Einzeldosis und Dosierungsintervalle).
- Keine Cephalosporine der 3. Generation bei nachgewiesenen Enterobacter-Infektionen (induzierbare Resistenzentwicklung während der Therapie).
- Hygienemaßnahmen zur Reduzierung der nosokomialen Übertragung.

Pseudomonas aeruginosa

- Hygienemaßnahmen zur Reduzierung der nosokomialen Übertragung.
- Keine Chinolone bei leichten Infektionen.

Stenotrophomonas (Xanthomonas) maltophilia

- Hygienemaßnahmen zur Reduzierung der nosokomialen Übertragung.
- Keine Carbapeneme verwenden.

Methicillin-resistenter Staphylococcus aureus

- Reduktion des Selektionsdrucks durch möglichst gezielte und spezifische Antibiotika-Therapie(s.o.).
- Isolierung, strikte Hygienemaßnahmen.

Streptococcus pneumoniae und Enterococcus faecium

- Reduktion des Selektionsdrucks (auch außerhalb des Krankenhauses).
- Vancomycin: nur bei Betalaktam-Allergie und Betalaktam-resistenten Erregern einsetzen bzw. bei Fehlen von Alternativen (Rifoldin, Linezolid, Trimethoprim/Sulfamethoxazol, Daptomycin).
- Antibiotika-assoziierte pseudomembranöse Kolitis: primär Metronidazol verwenden, (Vancomycin p. o. nur bei schwerer Erkrankung).
- Hygienemaßnahmen zur Reduzierung der nosokomialen Übertragung von Vancomycin- resistenten Enterokokken.

So konnte bereits in einer älteren Studie aus Genf über Erfahrungen mit einem Programm zur Verbesserung der Händehygiene in einem Lehrkrankenhaus (Masaki et al.; 2001) gezeigt werden, dass die Häufigkeit von MRSA-Übertragungen um mehr als die Hälfte (von 2,2 auf 0,9 Episoden pro 10.000 Patiententage) zurückging, wenn die Händedesinfektion konsequent angewendet wurde. Diese Studie unterstreicht wieder einmal, dass die hygienische Händedesinfektion die Gesamtinfektionsrate von nosokomialen Infektionen signifikant senken kann. In skandinavischen Ländern konnte durch rigorose Isoliermaßnahmen und beschränkte Anwendung von Antibiotika die Ausbreitung von MRSA erfolgreich vermindert werden.

Eine 2009 publizierte Studie aus Deutschland (Kappstein et al., Der Chirurg) kommt allerdings zu dem Schluss dass "bei einem Verzicht auf eine strikte Isolierung unter Fokussierung auf Standardhygiene ein erhöhtes Risiko für die Akquisition von MRSA nicht erkennbar ist".

Optimierte Antibiotikatherapie - Kultur

Unnötige, zu lange oder falsche Antibiotika-Verordnungen können dazu führen, dass resistente Erreger selektioniert werden oder diese persistieren, was häufig mit Verschlechterung von bestehenden Infektionskrankheiten oder dem Auftreten von nosokomialen Infektionen einhergeht. Dadurch kommt es zu additiver Morbidität, einer Verlängerung des Krankenhausaufenthalts und zu zusätzlichen Kosten.

Eine "kalkulierte –empirische Interventionstherapie" (KIT), also eine Behandlung, die nicht das Ergebnis des mikrobiologischen Befundes abwarten kann, hat eine Reihe von verschiedenen Faktoren zu berücksichtigen: Wahrscheinlichster Erreger, klinisches Bild und Infektionszeichen, aktuelle Resistenzsituation, Kenntnis der Pharmakokinetik und Pharmakodynamik eines Präparates, Begleiterkrankungen des Patienten, bekannte Allergien etc. Nach Identifizierung und Resistenztestung des Erregers kann die KIT in die gezielte Therapie übergeführt werden.

Von Kollef wurden Entstehungsmechanismen und Auswirkungen der Resistenzentwicklung im Intensivbereich analysiert. Bei beatmungsassoziierten Pneumonien korrelierte eine inadäquate initiale Antibiotikatherapie in mehreren Studien mit einer erhöhten Letalität. Eine Zunahme resistenter Erreger auf einer Intensivstation erhöht auch die Wahrscheinlichkeit, dass die initiale Antibiotikatherapie wirkungslos bleibt. Eine verspätete Umstellung auf ein wirksames Regime nach dem Antibiogramm ändert an der erhöhten Letalität nichts mehr. Die Vermeidung von Resistenzen dürfte daher nach Auffassung des Autors wesentliche Bedeutung sowohl für den einzelnen Patienten als auch für die Ökonomie einer Intensivstation haben.

Eine Antibiotikatherapie muss als unzureichend bezeichnet werden, wenn durch die gewählte Applikationsform oder Dosierung keine ausreichende Blut- und Gewebespiegel erreicht werden, oder wenn der auslösende Erreger einer Infektion nicht erfasst wird.

Da Antibiotikaresistenzen lediglich der Negativabdruck des Antibiotikagebrauchs bzw, Antibiotikamissbrauchs in einer Klinik sind, stellt eine rationale und rationelle Antibiotikapolitik einen wesentlichen Faktor bei der Erhaltung eines normalen Empfindlichkeitsmusters dar!

Hier sei noch einmal auf die am LKI bestehende Möglichkeit von Antibiotikaberatung bzw. klinisch- infektiologischen Konsilien (durch Infektiologie -Innere Medizin I), Hilfestellung und Beratung bei der Interpretation mikrobiologischer Befunde (Sektion für Hygiene und Medizinische Mikrobiologie, Bereich Bakteriologie) und die krankenhaushygienische

Betreuung (Sektion für Hygiene und Medizinische Mikrobiologie, Bereich Krankenhaushygiene) verwiesen. Als weitere Hilfestellung kann auch das 2008 erstmals erschienene "Innsbrucker Infektionsbüchlein" dienen.

Wir empfehlen folgende Vorgangsweise:

- Versichern Sie sich, dass die Antibiotika identisch sind mit denen, die vom mikrobiologischen Labor für Empfindlichkeitstests verwendet werden.
- Versuchen Sie auch bei der empirischen Therapie so gezielt und spezifisch wie möglich zu therapieren.
- Stellen Sie Richtlinien für die Prophylaxe, für den empirischen Einsatz und für den Erreger-spezifischen Einsatz auf.
- Beschränken Sie den Einsatz von Antibiotika, die speziellen Indikationen vorbehalten, sehr nebenwirkungsreich oder sehr teuer sind.
- Überprüfen Sie die Qualität von Hygienemaßnahmen laufend und insbesondere bei einer Zunahme von Infektionen v.a. mit resistenten Erregern.
- Überwachen Sie die Resistenzsituation und Trends im Einsatz der Antibiotika und informieren Sie regelmäßig das medizinische Personal.
- Greifen Sie auf die Möglichkeit von klinisch- infektiologischen Konsiliaruntersuchungen und Beratungen zurück (besonders auch bei Infektionen ohne Erregernachweis).
- Führen Sie laufend Fortbildungskurse durch.
- Greifen Sie regulierend in die im Krankenhaus stattfindenden Werbemaßnahmen der Pharmafirmen ein.

Die lückenlose Erfassung und Dokumentation der Erreger nosokomialer Infektionen ist die wichtigste Basis für die Wahl der empirisch eingesetzten Antibiotikaregimes. Sie sollte den behandelnden Ärzten stets in aktueller Form vorliegen. Der Selektionsdruck lässt sich durch Vermeidung von Anwendungsfehlern deutlich reduzieren. die zum Resistenzproblem entscheidend beitragen.

Zu den häufigsten Therapiefehlern zählen:

- falsche Indikation,
- unkontrollierte Anwendung von Substanzen oder Substanzkombinationen mit grenzwertiger Wirksamkeit gegen Infektionserreger,
- zu niedrige Dosierung,
- zu lange Therapieintervalle und unnötig lange Therapiedauer,
- zu breite Antibiotika bzw. unnötige Kombinationstherapien,
- fehlende Deeskalation bei Nachweis eines zum Krankheitsbild passenden Erregers (z.B. Wechsel auf Antibiotika mit geringerem Selektionspotential),
- Fortsetzung der Therapie trotz fehlendem Behandlungserfolg.