Spiral phase contrast (SPC):
Using a helical phase pattern as phase filter in a Fourier plane gives rise to a doughnut-like point spread function. Convolution with an extended (amplitude- or) phase-object leads to strong isotropic edge enhancement in the image
An intuitive way to understand this is looking at the convolution integrals describing image formation for a “doughnut-kernel”: in a homogeneous (region of the) sample destructive interference occurs because of the π phase shift across the doughnut (for any angle along the ring). Structure in the sample will give rise to less imperfect cancellation and thus to a local brightening in the image. Consequently the light is redistributes into edges and borderlines within the sample.
Experimental demonstrations with a spiral phase plate manufactured by photolithography:
Publication(s):
S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte: Spiral phase contrast imaging in microscopy, Optics Express 13, 689 (2005).
A. Jesacher, S. Fürhapter, Bernet, M. Ritsch-Marte: Shadow effects in spiral phase contrast microscopy, Physical Review Letters 94, 233902 (2005).
S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, M. Ritsch-Marte: Quantitative imaging of complex samples in spiral phase contrast microscopy, Optics Express 14, 3792 (2006).
C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte: Upgrading a microscope with a spiral phase plate, J. Microscopy 230, 134-142 (2008).
For optically thick transparent objects one finds spiraled interferograms which enable one-image demodulation of optical thickness profiles:
Publication(s):
A. Jesacher, S. Fürhapter, S. Bernet,. Ritsch-Marte: Spiral interferogram analysis, Journal of the Optical Society of America A 23, 1400 (2006).
S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte: Spiral interferometry, Optics Letters 30, 1953 (2005).