search_icon 

close_icon

search_icon  

search_icon  

Vorschlag-Menue-Button Vorschlag-Team-Button Vorschlag-Buttons-Publications Vorschlag-Menue-Button-Projects

 

Publications

  • El Ghaleb Y, Campiglio M, Flucher BE. (2019) Correcting the R165K substitution in the first voltage-sensor of CaV1.1 right-shifts the voltage-dependence of skeletal muscle calcium channel activation. Channels (Austin). 2019 Dec;13(1):62-71. doi: 10.1080/19336950.2019.1568825. https://www.ncbi.nlm.nih.gov/pubmed/30638110

     

    Flucher BE, Campiglio M. (2019) STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. Biochim Biophys Acta Mol Cell Res. 2019 Jul;1866(7):1101-1110. doi: 10.1016/j.bbamcr.2018.12.004. Epub 2018 Dec 10. Review. https://www.ncbi.nlm.nih.gov/pubmed/30543836

     

    Campiglio M, Kaplan MM, Flucher BE. (2018) STAC3 incorporation into skeletal muscle triads occurs independent of the dihydropyridine receptor. J Cell Physiol. 2018 Dec;233(12):9045-9051. doi: 10.1002/jcp.26767. Epub 2018 Aug 2. https://www.ncbi.nlm.nih.gov/pubmed/30071129

     

    Costé de Bagneaux P, Campiglio M, Benedetti B, Tuluc P, Flucher BE. (2018) Role of putative voltage-sensor countercharge D4 in regulating gating properties of CaV1.2 and CaV1.3 calcium channels. Channels (Austin). 2018;12(1):249-261. doi: 10.1080/19336950.2018.1482183. https://www.ncbi.nlm.nih.gov/pubmed/30001160

     

    Kaplan MM, Sultana N, Benedetti A, Obermair GJ, Linde NF, Papadopoulos S, Dayal A, Grabner M, Flucher BE. (2018) Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation. Cell Rep. 2018 Jun 26;23(13):3891-3904. doi: 10.1016/j.celrep.2018.05.085. https://www.ncbi.nlm.nih.gov/pubmed/29949772

     

    Campiglio M, Costé de Bagneaux P, Ortner NJ, Tuluc P, Van Petegem F, Flucher BE. (2018) STAC proteins associate to the IQ domain of CaV1.2 and inhibit calcium-dependent inactivation. Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1376-1381. doi: 10.1073/pnas.1715997115. Epub 2018 Jan 23. https://www.ncbi.nlm.nih.gov/pubmed/29363593

     

    Wong King Yuen SM, Campiglio M, Tung CC, Flucher BE, Van Petegem F. (2017) Structural insights into binding of STAC proteins to voltage-gated calcium channels. Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9520-E9528. doi: 10.1073/pnas.1708852114. Epub 2017 Oct 23. https://www.ncbi.nlm.nih.gov/pubmed/29078335

     

    Findeisen, F., Campiglio, M., Jo, H., Rumpf, C.H., Pope, L., Abderemane-Ali, F., Rossen, N.D., Flucher, B.E., DeGrado, W.F., and Minor, D.L. Jr (2017) Stapled voltage-gated calcium channel (CaV) α-interaction domain (AID) peptides act as selective protein-protein interaction inhibitors of CaV function. ACS Chem. Neurosci., 2017 Mar 17. doi: 10.1021/acschemneuro.6b00454. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/28278376

     

    Mastrolia, V., Flucher, S.M., Obermair, G.J., Drach, M., Hofer, H., Renström, E., Schwartz, A., Striessnig, J., Flucher, B.E., and Tuluc, P. (2017) Loss of α2δ-1 calcium channel subunit function increases the susceptibility for diabetes. Diabetes, 2017 Jan 23. pii: db151349. doi: 10.2337/db16-0336. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/28115397

     

    Campiglio, M. and Flucher, B.E. (2017) STAC3 stably interacts through its C1 domain with CaV1.1 in skeletal muscle triads. Sci. Rep., 7:41003. doi: 10.1038/srep41003; https://www.ncbi.nlm.nih.gov/pubmed/28112192

     

    Flucher, B.E. and Tuluc, P. (2017) How and why are calcium currents curtailed in the skeletal muscle voltage-gated calcium channels? J. Physiol., 595:1451-1463. https://www.ncbi.nlm.nih.gov/pubmed/27896815

     

    Stanika, R., Campiglio, M., Pinggera, A., Lee, A., Striessnig, J.,  Flucher, B.E., and Obermair, G.J. (2016) Splice variants of the Cav1.3 L-type calcium channel regulate dendritic spine morphology. Sci. Rep., 2016 Oct 6;6:34528. doi: 10.1038/srep34528;  https://www.ncbi.nlm.nih.gov/pubmed/27708393

     

    Flucher, B.E. (2016) Specific contributions of the four voltage-sensing domains in L-type calcium channels to gating and modulation J. Gen. Physiol. 148:91-95. https://www.ncbi.nlm.nih.gov/pubmed/27481711

     

    Rzhepetskyy, Y., Lazniewska, J., Proft, J.,  Campiglio, M., Flucher, B.E., and Weiss, N. (2016) A CaV3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels, 10:346-354. https://www.ncbi.nlm.nih.gov/pubmed/27149520

     

    Tuluc, P., Benedetti, B., Coste de Bagneaux, P., Grabner, M., and Flucher, B.E. (2016) Two distinct voltage sensing domains control voltage-sensitivity and kinetics of current activation in CaV1.1 calcium channels. J. Gen. Physiology, 147:437-449. https://www.ncbi.nlm.nih.gov/pubmed/27185857

     

    Benedetti, B., Benedetti, A., and Flucher, B.E. (2016) Loss of the calcium channel β4 subunit impairs parallel fiber volley and purkinje cell firing in cerebellum of adult ataxic mice. Eur.  J. Neurosci. 43:1486-1498.  https://www.ncbi.nlm.nih.gov/pubmed/27003325

     

    Flucher, B.E. (2016) Retrograde coupling: Muscle’s orphan signaling pathway? Biophs. J. 110:870-871. https://www.ncbi.nlm.nih.gov/pubmed/26910422

     

    Sultana, N., Dienes, B., Benedetti, A., Tuluc, P., Szentesi, P., Sztretye, M., Rainer, J., Hess, M.W., Schwarzer, C., Obermair, G.J., Csernoch, L., and Flucher, B.E. (2016) Restricting calcium currents is required for correct fiber type specification in skeletal muscle. Development, 143:1547-1559. https://www.ncbi.nlm.nih.gov/pubmed/26965373

     

    Tuluc, P., Yarov-Yarovoi, V., Benedetti, B., and Flucher, B.E. (2015) Molecular interactions in the voltage sensor controlling gating properties of CaV calcium channels. Structure, 24:261-271. https://www.ncbi.nlm.nih.gov/pubmed/26749449

     

    Kaur, G., Pinggera, A., Ortner, N.J., Lieb, A., Sinnegger-Brauns, M.J., Yarov-Yarovoy, V., Obermair, G.J., Flucher, B.E., Striessnig, J. (2015) A polybasic plasma membrane binding motif in the I-II linker stabilizes voltage-gated Cav1.2 calcium channel function. J. Biol. Chem. 290:21086-100. https://www.ncbi.nlm.nih.gov/pubmed/26100638

     

    Flucher, B.E. (2015) How is SR calcium release in muscle modulated by PIP(4,5)2? J. Gen. Physiol. 145:361-364.  https://www.ncbi.nlm.nih.gov/pubmed/25918356

     

    Campiglio, M. and Flucher, B.E., The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels. J Cell Physiol, 2015. http://www.ncbi.nlm.nih.gov/pubmed/25820299

     

    Benedetti, B., Tuluc, P., Mastrolia, V., Dlaska, C., and Flucher, B.E., Physiological and Pharmacological Modulation of the Embryonic Skeletal Muscle Calcium Channel Splice Variant CaV1.1e. Biophys J, 2015. 108(5): p. 1072-80. http://www.ncbi.nlm.nih.gov/pubmed/25762319

     

    Etemad, S., Obermair, G.J., Bindreither, D., Benedetti, A., Stanika, R., Di Biase, V., Burtscher, V., Koschak, A., Kofler, R., Geley, S., Wille, A., Lusser, A., Flockerzi, V., and Flucher, B.E., Differential neuronal targeting of a new and two known calcium channel beta4 subunit splice variants correlates with their regulation of gene expression. J Neurosci, 2014. 34(4): p. 1446-61. http://www.ncbi.nlm.nih.gov/pubmed/24453333

     

    Gstir, R., Schafferer, S., Scheideler, M., Misslinger, M., Griehl, M., Daschil, N., Humpel, C., Obermair, G.J., Schmuckermair, C., Striessnig, J., Flucher, B.E., and Huttenhofer, A., Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases. RNA, 2014. 20(12): p. 1929-43. http://www.ncbi.nlm.nih.gov/pubmed/25344396

     

    Etemad, S., Campiglio, M., Obermair, G.J., and Flucher, B.E., The juvenile myoclonic epilepsy mutant of the calcium channel beta(4) subunit displays normal nuclear targeting in nerve and muscle cells. Channels (Austin), 2014. 8(4): p. 334-43. http://www.ncbi.nlm.nih.gov/pubmed/24875574

     

    Campiglio, M., Di Biase, V., Tuluc, P., and Flucher, B.E., Stable incorporation versus dynamic exchange of beta subunits in a native Ca2+ channel complex. J Cell Sci, 2013. 126(Pt 9): p. 2092-101. http://www.ncbi.nlm.nih.gov/pubmed/23447673

     

    Nimmervoll, B., Flucher, B.E., and Obermair, G.J., Dominance of P/Q-type calcium channels in depolarization-induced presynaptic FM dye release in cultured hippocampal neurons. Neuroscience, 2013. 253: p. 330-40. http://www.ncbi.nlm.nih.gov/pubmed/24012836

     

    Daschil, N., Obermair, G.J., Flucher, B.E., Stefanova, N., Hutter-Paier, B., Windisch, M., Humpel, C., and Marksteiner, J., CaV1.2 calcium channel expression in reactive astrocytes is associated with the formation of amyloid-beta plaques in an Alzheimer's disease mouse model. J Alzheimers Dis, 2013. 37(2): p. 439-51. http://www.ncbi.nlm.nih.gov/pubmed/23948887

     

    Nakada, T., Flucher, B.E., Kashihara, T., Sheng, X., Shibazaki, T., Horiuchi-Hirose, M., Gomi, S., Hirose, M., and Yamada, M., The proximal C-terminus of alpha(1C) subunits is necessary for junctional membrane targeting of cardiac L-type calcium channels. Biochem J, 2012. 448(2): p. 221-31. http://www.ncbi.nlm.nih.gov/pubmed/22928916

     

    Di Biase, V., Tuluc, P., Campiglio, M., Obermair, G.J., Heine, M., and Flucher, B.E., Surface traffic of dendritic CaV1.2 calcium channels in hippocampal neurons. J Neurosci, 2011. 31(38): p. 13682-94. http://www.ncbi.nlm.nih.gov/pubmed/21940459

     

    Flucher, B.E. and Tuluc, P., A new L-type calcium channel isoform required for normal patterning of the developing neuromuscular junction. Channels (Austin), 2011. 5(6): p. 518-24. http://www.ncbi.nlm.nih.gov/pubmed/21993196

     

    Tuluc, P. and Flucher, B.E., Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants. J Muscle Res Cell Motil, 2011. 32(4-5): p. 249-56. http://www.ncbi.nlm.nih.gov/pubmed/22057633

     

    Schlick, B., Flucher, B.E., and Obermair, G.J., Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons. Neuroscience, 2010. 167(3): p. 786-98. http://www.ncbi.nlm.nih.gov/pubmed/20188150

     

    Flucher, B.E., Rem-induced inhibition of Ca2+ channels--a three-pronged assault. J Physiol, 2010. 588(Pt 11): p. 1801-2. http://www.ncbi.nlm.nih.gov/pubmed/20516339

     

    Obermair, G.J., Schlick, B., Di Biase, V., Subramanyam, P., Gebhart, M., Baumgartner, S., and Flucher, B.E., Reciprocal interactions regulate targeting of calcium channel beta subunits and membrane expression of alpha1 subunits in cultured hippocampal neurons. J Biol Chem, 2010. 285(8): p. 5776-91. http://www.ncbi.nlm.nih.gov/pubmed/19996312

     

    Pirone, A., Schredelseker, J., Tuluc, P., Gravino, E., Fortunato, G., Flucher, B.E., Carsana, A., Salvatore, F., and Grabner, M., Identification and functional characterization of malignant hyperthermia mutation T1354S in the outer pore of the Cavalpha1S-subunit. Am J Physiol Cell Physiol, 2010. 299(6): p. C1345-54. http://www.ncbi.nlm.nih.gov/pubmed/20861472

     

    Subramanyam, P., Obermair, G.J., Baumgartner, S., Gebhart, M., Striessnig, J., Kaufmann, W.A., Geley, S., and Flucher, B.E., Activity and calcium regulate nuclear targeting of the calcium channel beta4b subunit in nerve and muscle cells. Channels (Austin), 2009. 3(5): p. 343-55. http://www.ncbi.nlm.nih.gov/pubmed/19755859

     

    Mackrill, J.J., England, K., Flucher, B.E., and McCarthy, T.V., 'Shotgun immunological' approach for analysis of a complex subcellular system. Int J Mol Med, 2009. 23(3): p. 399-405. http://www.ncbi.nlm.nih.gov/pubmed/19212659

     

    Di Biase, V., Flucher, B.E., and Obermair, G.J., Resolving sub-synaptic compartments with double immunofluorescence labeling in hippocampal neurons. J Neurosci Methods, 2009. 176(2): p. 78-84. http://www.ncbi.nlm.nih.gov/pubmed/18805439

     

    Tuluc, P., Molenda, N., Schlick, B., Obermair, G.J., Flucher, B.E., and Jurkat-Rott, K., A CaV1.1 Ca2+ channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle. Biophys J, 2009. 96(1): p. 35-44. http://www.ncbi.nlm.nih.gov/pubmed/19134469

     

    Obermair, G.J., Tuluc, P., and Flucher, B.E., Auxiliary Ca(2+) channel subunits: lessons learned from muscle. Curr Opin Pharmacol, 2008. 8(3): p. 311-8. http://www.ncbi.nlm.nih.gov/pubmed/18329337

     

    Di Biase, V., Obermair, G.J., Szabo, Z., Altier, C., Sanguesa, J., Bourinet, E., and Flucher, B.E., Stable membrane expression of postsynaptic CaV1.2 calcium channel clusters is independent of interactions with AKAP79/150 and PDZ proteins. J Neurosci, 2008. 28(51): p. 13845-55. http://www.ncbi.nlm.nih.gov/pubmed/19091974

     

    Bleunven, C., Treves, S., Jinyu, X., Leo, E., Ronjat, M., De Waard, M., Kern, G., Flucher, B.E., and Zorzato, F., SRP-27 is a novel component of the supramolecular signalling complex involved in skeletal muscle excitation-contraction coupling. Biochem J, 2008. 411(2): p. 343-9. http://www.ncbi.nlm.nih.gov/pubmed/18035970

     

    Tuluc, P., Kern, G., Obermair, G.J., and Flucher, B.E., Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel alpha2delta-1 subunit in cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A, 2007. 104(26): p. 11091-6. http://www.ncbi.nlm.nih.gov/pubmed/17563358

     

    Szabo, Z., Obermair, G.J., Cooper, C.B., Zamponi, G.W., and Flucher, B.E., Role of the synprint site in presynaptic targeting of the calcium channel CaV2.2 in hippocampal neurons. Eur J Neurosci, 2006. 24(3): p. 709-18. http://www.ncbi.nlm.nih.gov/pubmed/16930401

     

    Schredelseker, J., Di Biase, V., Obermair, G.J., Felder, E.T., Flucher, B.E., Franzini-Armstrong, C., and Grabner, M., The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. Proc Natl Acad Sci U S A, 2005. 102(47): p. 17219-24. http://www.ncbi.nlm.nih.gov/pubmed/16286639

     

    Schuhmeier, R.P., Gouadon, E., Ursu, D., Kasielke, N., Flucher, B.E., Grabner, M., and Melzer, W., Functional interaction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes. Biophys J, 2005. 88(3): p. 1765-77. http://www.ncbi.nlm.nih.gov/pubmed/15626717

     

    Obermair, G.J., Kugler, G., Baumgartner, S., Tuluc, P., Grabner, M., and Flucher, B.E., The Ca2+ channel alpha2delta-1 subunit determines Ca2+ current kinetics in skeletal muscle but not targeting of alpha1S or excitation-contraction coupling. J Biol Chem, 2005. 280(3): p. 2229-37. http://www.ncbi.nlm.nih.gov/pubmed/15536090

     

    Kern, G. and Flucher, B.E., Localization of transgenes and genotyping of H-2kb-tsA58 transgenic mice. Biotechniques, 2005. 38(1): p. 38, 40, 42. http://www.ncbi.nlm.nih.gov/pubmed/15679082

     

    Flucher, B.E., Obermair, G.J., Tuluc, P., Schredelseker, J., Kern, G., and Grabner, M., The role of auxiliary dihydropyridine receptor subunits in muscle. J Muscle Res Cell Motil, 2005. 26(1): p. 1-6. http://www.ncbi.nlm.nih.gov/pubmed/16088377

     

    Weiss, R.G., O'Connell, K.M., Flucher, B.E., Allen, P.D., Grabner, M., and Dirksen, R.T., Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III-IV loop on skeletal muscle EC coupling. Am J Physiol Cell Physiol, 2004. 287(4): p. C1094-102. http://www.ncbi.nlm.nih.gov/pubmed/15201141

     

    Kugler, G., Grabner, M., Platzer, J., Striessnig, J., and Flucher, B.E., The monoclonal antibody mAB 1A binds to the excitation--contraction coupling domain in the II-III loop of the skeletal muscle calcium channel alpha(1S) subunit. Arch Biochem Biophys, 2004. 427(1): p. 91-100. http://www.ncbi.nlm.nih.gov/pubmed/15178491

     

    Kugler, G., Weiss, R.G., Flucher, B.E., and Grabner, M., Structural requirements of the dihydropyridine receptor alpha1S II-III loop for skeletal-type excitation-contraction coupling. J Biol Chem, 2004. 279(6): p. 4721-8. http://www.ncbi.nlm.nih.gov/pubmed/14627713

     

    Takekura, H., Paolini, C., Franzini-Armstrong, C., Kugler, G., Grabner, M., and Flucher, B.E., Differential contribution of skeletal and cardiac II-III loop sequences to the assembly of dihydropyridine-receptor arrays in skeletal muscle. Mol Biol Cell, 2004. 15(12): p. 5408-19. http://www.ncbi.nlm.nih.gov/pubmed/15385628

     

    Obermair, G.J., Szabo, Z., Bourinet, E., and Flucher, B.E., Differential targeting of the L-type Ca2+ channel alpha 1C (CaV1.2) to synaptic and extrasynaptic compartments in hippocampal neurons. Eur J Neurosci, 2004. 19(8): p. 2109-22. http://www.ncbi.nlm.nih.gov/pubmed/15090038

     

    Obermair, G.J., Kugler, G., and Flucher, B.E., The role of the calcium channel alpha 2 delta-1 subunit in skeletal muscle. J Muscle Res Cell Motil, 2004. 25(3): p. 239-40. http://www.ncbi.nlm.nih.gov/pubmed/15467389

     

    Kasielke, N., Obermair, G.J., Kugler, G., Grabner, M., and Flucher, B.E., Cardiac-type EC-coupling in dysgenic myotubes restored with Ca2+ channel subunit isoforms alpha1C and alpha1D does not correlate with current density. Biophys J, 2003. 84(6): p. 3816-28. http://www.ncbi.nlm.nih.gov/pubmed/12770887

     

    Obermair, G.J., Kaufmann, W.A., Knaus, H.G., and Flucher, B.E., The small conductance Ca2+-activated K+ channel SK3 is localized in nerve terminals of excitatory synapses of cultured mouse hippocampal neurons. Eur J Neurosci, 2003. 17(4): p. 721-31. http://www.ncbi.nlm.nih.gov/pubmed/12603262

     

    Hitzl, M., Striessnig, J., Neuhuber, B., and Flucher, B.E., A mutation in the beta interaction domain of the Ca(2+) channel alpha(1C) subunit reduces the affinity of the (+)-[(3)H]isradipine binding site. FEBS Lett, 2002. 524(1-3): p. 188-92. http://www.ncbi.nlm.nih.gov/pubmed/12135765

     

    Flucher, B.E., Weiss, R.G., and Grabner, M., Cooperation of two-domain Ca(2+) channel fragments in triad targeting and restoration of excitation- contraction coupling in skeletal muscle. Proc Natl Acad Sci U S A, 2002. 99(15): p. 10167-72. http://www.ncbi.nlm.nih.gov/pubmed/12119388

     

    Takekura, H., Flucher, B.E., and Franzini-Armstrong, C., Sequential docking, molecular differentiation, and positioning of T-Tubule/SR junctions in developing mouse skeletal muscle. Dev Biol, 2001. 239(2): p. 204-14. http://www.ncbi.nlm.nih.gov/pubmed/11784029

     

    Wilkens, C.M., Kasielke, N., Flucher, B.E., Beam, K.G., and Grabner, M., Excitation-contraction coupling is unaffected by drastic alteration of the sequence surrounding residues L720-L764 of the alpha 1S II-III loop. Proc Natl Acad Sci U S A, 2001. 98(10): p. 5892-7. http://www.ncbi.nlm.nih.gov/pubmed/11320225

     

    Flucher, B.E., Kasielke, N., and Grabner, M., The triad targeting signal of the skeletal muscle calcium channel is localized in the COOH terminus of the alpha(1S) subunit. J Cell Biol, 2000. 151(2): p. 467-78. http://www.ncbi.nlm.nih.gov/pubmed/11038191

     

    Flucher, B.E., Kasielke, N., Gerster, U., Neuhuber, B., and Grabner, M., Insertion of the full-length calcium channel alpha(1S) subunit into triads of skeletal muscle in vitro. FEBS Lett, 2000. 474(1): p. 93-8. http://www.ncbi.nlm.nih.gov/pubmed/10828458

     

    Sipos, I., Pika-Hartlaub, U., Hofmann, F., Flucher, B.E., and Melzer, W., Effects of the dihydropyridine receptor subunits gamma and alpha2delta on the kinetics of heterologously expressed L-type Ca2+ channels. Pflugers Arch, 2000. 439(6): p. 691-9. http://www.ncbi.nlm.nih.gov/pubmed/10784342

     

    Gerster, U., Neuhuber, B., Groschner, K., Striessnig, J., and Flucher, B.E., Current modulation and membrane targeting of the calcium channel alpha1C subunit are independent functions of the beta subunit. J Physiol, 1999. 517 ( Pt 2): p. 353-68. http://www.ncbi.nlm.nih.gov/pubmed/10332087

     

    Flucher, B.E., Conti, A., Takeshima, H., and Sorrentino, V., Type 3 and type 1 ryanodine receptors are localized in triads of the same mammalian skeletal muscle fibers. J Cell Biol, 1999. 146(3): p. 621-30. http://www.ncbi.nlm.nih.gov/pubmed/10444070

     

    Neuhuber, B., Gerster, U., Doring, F., Glossmann, H., Tanabe, T., and Flucher, B.E., Association of calcium channel alpha1S and beta1a subunits is required for the targeting of beta1a but not of alpha1S into skeletal muscle triads. Proc Natl Acad Sci U S A, 1998. 95(9): p. 5015-20. http://www.ncbi.nlm.nih.gov/pubmed/9560220

     

    Neuhuber, B., Gerster, U., Mitterdorfer, J., Glossmann, H., and Flucher, B.E., Differential effects of Ca2+ channel beta1a and beta2a subunits on complex formation with alpha1S and on current expression in tsA201 cells. J Biol Chem, 1998. 273(15): p. 9110-8. http://www.ncbi.nlm.nih.gov/pubmed/9535900

     

    Protasi, F., Franzini-Armstrong, C., and Flucher, B.E., Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. J Cell Biol, 1997. 137(4): p. 859-70. http://www.ncbi.nlm.nih.gov/pubmed/9151688

     

    Flucher, B.E. and Franzini-Armstrong, C., Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci U S A, 1996. 93(15): p. 8101-6. http://www.ncbi.nlm.nih.gov/pubmed/8755610

     

    Powell, J.A., Petherbridge, L., and Flucher, B.E., Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle. J Cell Biol, 1996. 134(2): p. 375-87. http://www.ncbi.nlm.nih.gov/pubmed/8707823

     

    Flucher, B.E., Andrews, S.B., and Daniels, M.P., Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Mol Biol Cell, 1994. 5(10): p. 1105-18. http://www.ncbi.nlm.nih.gov/pubmed/7865878

     

    Huang, C.F., Flucher, B.E., Schmidt, M.M., Stroud, S.K., and Schmidt, J., Depolarization-transcription signals in skeletal muscle use calcium flux through L channels, but bypass the sarcoplasmic reticulum. Neuron, 1994. 13(1): p. 167-77. http://www.ncbi.nlm.nih.gov/pubmed/8043275

     

    Flucher, B.E., Takekura, H., and Franzini-Armstrong, C., Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol, 1993. 160(1): p. 135-47. http://www.ncbi.nlm.nih.gov/pubmed/8224530

     

    Fowler, V.M., Sussmann, M.A., Miller, P.G., Flucher, B.E., and Daniels, M.P., Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol, 1993. 120(2): p. 411-20. http://www.ncbi.nlm.nih.gov/pubmed/8421055

     

    Flucher, B.E., Andrews, S.B., Fleischer, S., Marks, A.R., Caswell, A., and Powell, J.A., Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. J Cell Biol, 1993. 123(5): p. 1161-74. http://www.ncbi.nlm.nih.gov/pubmed/8245124

     

    Flucher, B.E. and Andrews, S.B., Characterization of spontaneous and action potential-induced calcium transients in developing myotubes in vitro. Cell Motil Cytoskeleton, 1993. 25(2): p. 143-57. http://www.ncbi.nlm.nih.gov/pubmed/8324830

     

    Flucher, B.E., Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad. Dev Biol, 1992. 154(2): p. 245-60. http://www.ncbi.nlm.nih.gov/pubmed/1426638

     

    Flucher, B.E., Phillips, J.L., Powell, J.A., Andrews, S.B., and Daniels, M.P., Coordinated development of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in vivo and in vitro. Dev Biol, 1992. 150(2): p. 266-80. http://www.ncbi.nlm.nih.gov/pubmed/1551475

     

    Flucher, B.E., Terasaki, M., Chin, H.M., Beeler, T.J., and Daniels, M.P., Biogenesis of transverse tubules in skeletal muscle in vitro. Dev Biol, 1991. 145(1): p. 77-90. http://www.ncbi.nlm.nih.gov/pubmed/2019326

     

    Flucher, B.E., Phillips, J.L., and Powell, J.A., Dihydropyridine receptor alpha subunits in normal and dysgenic muscle in vitro: expression of alpha 1 is required for proper targeting and distribution of alpha 2. J Cell Biol, 1991. 115(5): p. 1345-56. http://www.ncbi.nlm.nih.gov/pubmed/1659576

     

    Flucher, B.E., Morton, M.E., Froehner, S.C., and Daniels, M.P., Localization of the alpha 1 and alpha 2 subunits of the dihydropyridine receptor and ankyrin in skeletal muscle triads. Neuron, 1990. 5(3): p. 339-51. http://www.ncbi.nlm.nih.gov/pubmed/2169270

     

    Flucher, B.E. and Daniels, M.P., Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Neuron, 1989. 3(2): p. 163-75. http://www.ncbi.nlm.nih.gov/pubmed/2560390

     

    Flucher, B.E., Lenglachner-Bachinger, C., and Feurle, G.E., Immunocytochemical evidence for the colocalization of neurotensin/xenopsin- and gastrin/caerulein-immunoreactive substances in Xenopus laevis gastrointestinal tract. Gen Comp Endocrinol, 1988. 72(1): p. 54-62. http://www.ncbi.nlm.nih.gov/pubmed/3053328

     

    Flucher, B.E., Lenglachner-Bachinger, C., Pohlhammer, K., Adam, H., and Mollay, C., Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands. J Cell Biol, 1986. 103(6 Pt 1): p. 2299-309. http://www.ncbi.nlm.nih.gov/pubmed/3782298