search_icon 

close_icon

search_icon  

search_icon  

Innsbrucker Team untersuchte überlappende Sequenzen in bakterieller mRNA

Proteinvielfalt in Bakterien könnte größer sein als gedacht

Als Proteinfabrik der Zelle hat das Ribosom die Aufgabe, bestimmte Teile der mRNA in ein Eiweiß zu übersetzen. Um zu erkennen, wo es damit anfangen und wieder aufhören muss, braucht es so genannte Start- und Stopcodons. Ein Team um Matthias Erlacher am Institut für Genomik und RNomik an der Med Uni Innsbruck untersuchte erstmals überlappende Startcodons in bakteriellen mRNAs. Nun muss geklärt werden, ob aufgrund des entdeckten Mechanismus die bakterielle Proteinvielfalt größer ist, als bisher angenommen, oder ob es sich dabei um eine neue Art der Regulation für die Eiweißproduktion handelt.

Bilder frei zum Download:


Die Nukleotidsequenz AUGUG in bakteriellen mRNAs kodiert für zwei überlappende Startcodons, die zu unterschiedlichen Proteinprodukten führen können. (Foto: MUI/Institut für Genomik und RNomik)

Matthias Erlacher (Foto: MUI/D. Bullock)

 

Innsbruck, 01.02.2023: Proteine, also Eiweiße, werden nach einem Bauplan hergestellt, der auf der DNA gespeichert ist und bei Bedarf in RNA umgeschrieben wird. Diese mRNA wird dann vom Ribosom, der Proteinfabrik der Zellen, abgelesen und in eine Aminosäuresequenz – das heißt, in ein Protein - übersetzt. Damit das Ribosom erkennt, welcher Bereich der mRNA übersetzt werden soll, gibt es so genannte Startcodons und Stopcodons. Diese müssen schnell und exakt erkannt werden, um den Bedarf an Proteinen in einer Zelle zu jedem Zeitpunkt zu decken. Im Rahmen ihrer Forschungsarbeit sind WissenschafterInnen um Matthias Erlacher vom Institut für Genomik und RNomik (Direktor: Alexander Hüttenhofer) auf überlappende Startcodon-Sequenzen in E. coli Bakterien gestoßen, welche das Ribosom vor die Herausforderung stellen, das richtige Startcodon zu erkennen. Je nachdem, bei welchem Startpunkt das Ribosom ansetzt, verschiebt sich der Leserahmen und völlig unterschiedliche Proteine können entstehen. Das bedeutet nun, dass in einer mRNA-Sequenz zwei Eiweiße codiert sein können und die Proteinvielfalt in der
(Bakterien-)Zelle möglicherweise größer ist, als bisher angenommen. Die Erkenntnisse wurden kürzlich im Fachjournal Nucleic Acids Research veröffentlicht.

Das mit Abstand am häufigsten vorkommende Startcodon in allen Organismen ist AUG, eine Abfolge der Nukleotide Adenosin (A), Uracil (U) und Guanosin (G). In bakteriellen mRNAs können auch die Codons GUG und UUG als Startcodon fungieren. Im Zuge ihrer Arbeit in dem vom Forschungsförderungsfond FWF finanzierten Sonderforschungsbereich RNA Deco wurde das Innsbrucker Team auf die Sequenzfolge AUGUG in E.coli mRNAs aufmerksam, die zwei überlappende Startcodons, AUG und GUG, aufweist. Trotz der unmittelbaren Nachbarschaft der zwei Startcodons, darf nur eines der beiden vom Ribosom erkannt werden, um das gewünschte Protein herzustellen. „Wir wollten verstehen wie das Ribosom in diesen Fällen die Entscheidung trifft und welche Faktoren diesen Prozess beeinflussen. Dabei stellten wir fest, dass unter bestimmten Vorrausetzungen tatsächlich beide Startcodons erkannt werden. Dies würde letztlich bedeuten, dass ein zweiter Leserahmen in der betreffenden mRNA Sequenz verborgen ist. Folglich ist das bakterielle Proteom, also die Gesamtheit der Proteine, unter Umständen größer als gedacht“, erklärt Erlacher. Maximilian Kohl, ein Student der Molekularen Medizin in Innsbruck, widmete sich in seiner Masterarbeit den daraus entstandenen Fragestellungen und ist Erstautor der nun veröffentlichten Studie. 

Mehr Details: https://www.i-med.ac.at/mypoint/news/768936.html

Zu den Personen:
Matthias Erlacher studierte Chemie an der Universität Innsbruck und promovierte 2008 an der Medizinischen Universität Innsbruck. Seit 2012 forscht er mit seinem Team am Institut für Genomik und RNomik zu den unterschiedlichsten Aspekten der Proteinbiosynthese. 2020 folgte die Habilitation in Molekularbiologie. Derzeit sind vor allem modifizierte RNAs und deren Rolle in der Zelle im Fokus seiner Forschungsarbeit.

Maximilian Kohl, der Erstautor der Studie, studierte Molekulare Medizin an der Medizinischen Universität Innsbruck und erforscht nun in seiner PhD Arbeit die Translation in Staphylococcus aureus an der Universität Straßburg.

Forschungsarbeit:
Maximilian P Kohl, Maria Kompatscher, Nina Clementi, Lena Holl, Matthias D Erlacher, Initiation at AUGUG and GUGUG sequences can lead to translation of overlapping reading frames in E. coliNucleic Acids Research, Volume 51, Issue 1, 11 January 2023, Pages 271–289, https://doi.org/10.1093/nar/gkac1175